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Abstract 

The Amazon rain forest covers an area of ~ 6.7 million  km2 of South America; nearly 60% of it is in Brazil, while the rest 
is shared among eight other countries. This vast extent of rain forest is a globally significant ecosystem that provides 
numerous ecosystem services that benefit humanity including essential climate regulation, biodiversity conservation, 
and hydrological stability. However, deforestation and forest degradation have led to the loss of approximately 
15% of the Amazon rainforest since the 1970s, primarily driven by agricultural expansion, illegal mining, logging, 
and wildfires. These pressures have triggered a cascade of consequences, including biodiversity loss, disruption 
of cultural and ecosystem services, depletion of carbon sinks, and severe alterations to the hydrological cycle. While 
initially manifesting at local and regional scales, these effects increasingly pose risks to global climate stability. We 
simulated deforestation scenarios (15%, 50%, and 100% forest loss) using the Community Atmosphere Model (CAM 
3.1) to evaluate precipitation changes and atmospheric responses. Results indicate substantial reductions in regional 
precipitation, hydrological disruptions affecting agricultural productivity, and an increasing risk of the Amazon 
transitioning from a carbon sink to a carbon source. This underscores the urgency of policy interventions, 
including stricter environmental regulations, trade restrictions on commodities produced illegally or in deforested 
areas, enhanced Indigenous land protection, and international cooperation to mitigate deforestation and promote 
sustainable land use. Immediate action is necessary to prevent irreversible ecological and climatic tipping points.
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Ecosystem services of the Amazon rain forest: 
essential benefits to nature and society
The Amazon rain forest is the largest contiguous tract 
of tropical forest on Earth. It is an incredibly important 
biome playing a key role in global biogeochemical cycles 
as well as being one of the most biodiverse places on the 
planet with a large number of species still undiscovered, 
but with some already extinct or being threatened with 
extinction (Grelle 2005; Feeley and Silman 2009; Gomes 
et  al. 2019; WWF 2022). It furthermore homes over 
200 Indigenous groups many of whom are isolated in 
protected Indigenous lands (Leal Filho et  al. 2020). A 
very large proportion of the trees found in the Amazon 
have human uses (Coelho et  al. 2021). It is therefore 
considered a critical ecosystem because it provides 
numerous ecosystem services, which are classified 
into the following categories (Millennium Ecosystem 
Assessment 2005):

 i. Regulating services are ecological processes that 
are essential for life support systems, providing 
stability to ecosystem dynamics, such as global 
climate and water flow regulation.

 ii. Supporting services offer suitable conditions for 
water cycling and primary production etc.

 iii. Provisioning services are the products people 
obtain from ecosystems including resources such 
as timber, fresh water, food, fibres, and medicinal 
plants.

 iv. Cultural services are spiritual, symbolic and other 
interactions with the abiotic components of the 
natural environment; these include traditions, 
beliefs, and knowledge of Indigenous, traditional, 
and local peoples.

The Amazon rain forest offers various ecosystem 
services (Fig.  1). One example among them is water 
cycling, whereby 20% of the global freshwater discharge 
is from the Amazon basin (Fassoni-Andrade et al. 2021). 
In addition, this vast moist forest plays an important 
role in regulating the mass balance across the globe due 
to the trees’ transpiration mechanism, which returns 
water vapour to the atmosphere, thereby regulating 
the precipitation regime of the whole planet (Coe et  al. 
2016). Particular mention can be made regarding the 
moisture from the forest’s evapotranspiration processes, 
which is transported to the southeast and midwest 
regions of Brazil, where most of the country’s population, 
agricultural production, and reservoirs for energy 
generation are located. Arraut et al. (2012) predicted that 

Fig. 1 A schematic view of some of the most relevant ecosystem services (ES) associated with the Amazon rain forest [Map data © 2021 Google]
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this water transport is comparable to the total discharge 
from the Amazon river, and is responsible for almost 
40% of the precipitation formation in the Amazon region 
(Nielsen et  al. 2016, 2019; da Silva et  al. 2019). This 
transport of moisture, known as ‘flying rivers’ by some 
authors (Getirana et  al. 2021), plays a fundamental role 
in the maintenance of precipitation in the humid period 
of the midwest and southeast regions of Brazil. The water 
originating from the Amazon region also fills the largest 
and most important reservoirs for hydroelectric power 
generation in Brazil (Getirana et al. 2021).

This large extent of rain forest also plays an important 
role in the storage and sequestration of carbon (C), due 
to about 15% of global photosynthetic activity occurring 
here (Malhi and Grace 2000; Beer et  al. 2010) that 
absorbs carbon dioxide  (CO2) from the atmosphere, thus 
contributing to the amelioration of the greenhouse effect 
on a global scale. The Amazon rain forest above-ground 
biomass (i.e. that stored in vegetation) is about 90 Pg 
C (Malhi et  al. 2006; Fawcett et  al. 2023) with a similar 
amount stored in soils.

Attributing economic values to ecosystem services 
provided by the Amazon rain forest are both controversial 
and challenging. However, without providing monetary 
values for unpriced services, quantifiable benefits 
from deforestation may be over-emphasized, thereby 
promoting exploitative land uses (Strand et  al. 2018). 
In a meta-analysis, Brouwer et  al. (2022) determined 
the mean value of C sequestration, water regulation, 
ecotourism, and recreation as about US$ 410   ha−1   yr−1. 
Strand et al. (2018) found that the central Amazon basin 
had greatest the ecosystem services values (sum of food 
production, raw material provision, greenhouse gas 
mitigation, and climate regulation), ranging up to US$ 
737   ha−1   yr−1, but higher value areas were restricted to 
only 12% of the remaining forest. Yet, Lapola et al. (2018) 
estimate that loss of ecosystem services due to climate 
change in the Brazilian Amazon may lead to major losses, 
including non-market valued services of US$ 7.7 ×  1012 
over a 30-year period, which is greater than the gross 
productivity of the region.

This paper primarily examines the issues of 
deforestation and forest degradation, with a specific focus 
on the Brazilian Amazon, one of the most ecologically 
important regions in the world. It explores how the 
ongoing destruction and degradation of the Amazon 
rain forest affects the ecosystem services that it provides, 
including regulating the climate, preserving biodiversity, 
maintaining water cycles, and supporting the livelihoods 
of local and Indigenous communities. This study 
provides an in-depth look at the scale of the problem, 
including the causes and drivers of deforestation, 
and the consequences these have for both local and 

global ecosystems. Furthermore, it discusses potential 
solutions and strategies to address these challenges, 
including policy interventions, conservation efforts, and 
reforestation initiatives. The main goal is to highlight not 
only the gravity of the issue but also the range of actions 
that can be taken to mitigate the damage and restore the 
health of the Amazon rain forest.

The Amazon under pressure
The Brazilian Amazon has been experiencing ongoing 
deforestation, largely driven by activities such as logging 
and land clearance for agriculture and cattle ranching. 
This deforestation has a significant impact on biodiversity 
and contributes to climatic change. But there are also 
other problems which are negatively impairing the 
ecosystem services it offers. Some of them are described 
herewith.

Forest loss and degradation
The unsustainable management of ecosystems in the 
Amazon rain forest feeds into global climate changes and 
alters ecosystem service provision with their combined 
effects exposing and increasing the socio-environmental 
vulnerabilities of its populations (Brondízio et  al. 
2016; Garrett et  al. 2021, 2024; Reygadas et  al. 2023). 
The Amazon rain forest has already lost around 15% 
of its 6 ×  106  km2 surface area reported in the 1970s 
(Amigo 2020; Marques 2024). Rates of deforestation in 
Brazil have been declining from those seen in the early 
2000s, although clearly increased under the Bolsonaro 
administration from 2019 to 2022 indicating the 
importance of political and economic forces on rates of 
forest loss (Fig. 2).

A recent study by the Joint Research Centre (JRC) of 
the European Commission (Beuchle et al. 2022), based on 
the JRC Tropical Moist Forest (TMF) dataset, reported 
that, from 1990 to 2021, the pan-Amazon (i.e. Amazonia 

Fig. 2 Rates of deforestation in the Brazilian Legal Amazon using 
data from the INPE PRODES satellite. [Data were obtained from INPE 
(2025)]
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sensu stricto and Guiana regions; Eva et  al. 2005) lost 
more than 820,000  km2 (14.5%) of undisturbed humid 
forest. An example extracted from the JRC-TMF dataset 
for an area in the Brazilian Amazon is shown in Fig.  3. 
Amazonian deforestation not only reduces the forest’s 
carbon sequestration capacity but also contributes 
significantly to greenhouse gas emissions. For example, in 
2020,  CO2 emissions from the Amazon forest increased 
by approximately 140% compared to the lowest levels 

recorded in 2012, reflecting an increasing pattern of 
biomass loss (Kruid et al. 2021; Rosan et al. 2024).

On top of forest loss, forest degradation emerges as a 
critical source of  CO2 emissions, with the area of forest 
degraded being similar or slightly greater than that 
already deforested (Matricardi et al. 2020; Qin et al. 2021; 
Beuchle et  al. 2022; Coelho-Junior et  al. 2022; Lapola 
et  al. 2023) depending on how ‘degradation’ is defined. 
For example, Qin et  al. (2021) reported that between 

Fig. 3 An example of forest loss in the Brazilian Amazon estimated using the Joint Research Centre’s Tropical Moist Forest dataset which 
provides high‑resolution Landsat‑derived information on forest cover change from 1990 to 2023. [Authors’ own work showing land cover change 
to distinguish between intact and deforested areas illustrating deforestation patterns on a yearly basis, based on data from Vancutsem et al. (2021)]
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2010 and 2019, the Brazilian Amazon recorded a net 
loss of 0.67 Pg of C, with 73% of this loss attributed to 
forest degradation, exceeding the impact of direct 
deforestation. This forest loss and degradation comes 
from a history of anthropogenic occupancy and actions in 
the last 50 years, such as timber extraction, road building, 
hydropower projects, mining, agricultural expansion, 
and fires (Soares-Filho et al. 2006; Davidson et al. 2012; 
Athayde et al. 2019; Garrett et al. 2021; Souza‐Filho et al. 
2021; Lapola et al. 2023). Forest fires, often exacerbated 
by severe droughts and human activities, play a central 
role and extreme climatic events, such as the 2015–2016 
El Niño, resulted in substantial carbon losses due to 
drought-induced fires in the eastern Amazon (Berenguer 
et al. 2021).

Agricultural expansion
Agricultural demands at larger scales and changes in the 
local way of life have resulted in the conversion of natural 
ecosystems to cattle ranching and soy cropland and 
which together form the main drivers of deforestation 
in the Brazilian Amazon (Marques 2024). Expansion 
of agricultural production still occurs at the expense of 
illegally deforested land (Rajão et  al. 2020) even though 
it is well known that millions of hectares of idle and non-
productive lands in the Amazon region could be used for 
agriculture (Nobre 2019; Ferrante and Fearnside 2022b). 
In fact, it has been shown that conversion of land in 
the cerrado would lead to less C emissions than in the 
Amazon (Cerri et al. 2018).

Mining in Indigenous lands
A multitude of other studies have also shown that the 
Amazon region continues to face an overexploitation 
of natural resources. Illegal activities including illegal 
mining and logging have been increasing despite 
environmental laws and regulations, causing the 
exploitation and degradation of land (Ferrante and 
Fearnside 2020; Garrett et  al. 2021). This has been 
notably challenging in Indigenous lands (Duarte et  al. 
2023) which are particularly important as Indigenous 
peoples and local communities (IPLCs) play a key 
role in enhancing socio-ecological resilience at larger 
scales because their livelihoods and cultural identity are 
intrinsically interlinked to biodiversity and ecological 
systems, thus establishing ‘biocultural’ landscapes 
(Athayde and Silva-Lugo 2018). Furthermore, the clearing 
of forest areas for livestock, crop farming, and mining 
projects also threaten the livelihoods of IPCLs who 
rely on these areas for their livelihoods. The increased 
illegal mining in Amazonia is of particular concern as it 
causes environmental degradation and pollution. There 
is evidence that mercury used for gold extraction has 

been bioaccumulated in aquatic food chains as detected 
at high concentrations in the hair of local communities 
(Gerson et al. 2022).

Wildfires
Considering that deforestation is a driver of fire activity 
(Libonati et  al. 2021; Silva et  al. 2021), the increase in 
deforestation may also promote an increase in fires in 
the Amazon region, with a consequential loss of forest 
and an increase in C emissions to the atmosphere. This 
is compounded by the effects of droughts that amplify 
fire occurrence (Campanharo et al. 2019; Berenguer et al. 
2021). When the forest is removed through burning, a 
large amount of particulate matter is also released  to  
the atmosphere, causing pollution (Forbes et  al. 2006) 
with negative health effects (Urrutia-Pereira et  al. 2021; 
Damm et  al. 2024) and reducing local precipitation 
due to increase in the production of aerosols (Andreae 
et  al. 2004; Barkhordarian et  al. 2019). Campanharo 
et  al. (2019) estimated the economic cost of fires in 
southwestern Amazonia to be US$ 2.43 ×  108 during the 
2010 drought period, representing 7% of the region’s 
gross domestic product.

Regional deforestation drivers in the Amazon
Although around 60% of the Amazon rain forest is in 
Brazil, indicating the importance of Brazilian policies and 
initiatives in conserving the forest, it is also relevant to 
consider deforestation in other neighbouring countries. 
In a recent literature review, Hänggli et  al. (2023) 
analysed deforestation drivers and the effectiveness 
of deforestation-control policies across Amazonian 
countries. This comprehensive review highlighted the 
diversity of deforestation dynamics across the region, 
revealing distinct patterns and causes specific to each 
country and sub-region. Agricultural expansion, 
including both cattle ranching and commodity crop 
cultivation, remains the primary proximate cause 
of deforestation across the Amazon (excepting the 
Guianas). In Brazil, Bolivia, Ecuador, and Colombia, 
pasture expansion has been consistently identified as the 
leading driver of deforestation (Arima et al. 2011; Barona 
et al. 2010). The main area of deforestation in Brazil is in 
the southern Amazon known as ‘the Arc of Deforestation’ 
that spreads from south-west Maranhão, through the 
states of Pará, Mato Grosso and Rondônia (Csillik et al. 
2024; Marques 2024). In the Arc of Deforestation, the 
rise of commodity crops such as soybeans became a 
dominant force for forest loss. Studies in the Brazilian 
Amazon reported a considerable indirect effect of soy 
expansion, which displaces pasture, into new frontier 
areas (Arima et  al. 2011; Song et  al. 2021). In Peru, oil 
palm expansion is linked to deforestation, while in Brazil 
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(primarily Pará) this relationship is not as pronounced 
(Rojas Briceño et  al. 2019). Small-scale or subsistence 
agriculture, although a minor driver compared to large-
scale activities, consistently contributes to forest loss in 
Bolivia, Peru, and Brazil, especially in Brazilian states like 
Roraima and Amapá (Tyukavina et  al. 2017). Although 
mining has a limited direct impact on deforestation in 
Brazil, it facilitates forest loss through road construction, 
which opens new areas to agricultural expansion (Sonter 
et  al. 2017). Large-scale hydropower projects in the 
Brazilian Amazon further exacerbate deforestation 
by encouraging agricultural and urban expansion 
(Siqueira-Gay et  al. 2020). Similarly, the construction 
of the Interoceanic Highway in Peru has been linked to 
increased deforestation driven by agriculture and mining 
in surrounding areas (Armenteras et  al. 2013; Sánchez-
Cuervo et al. 2020).

Impacts on an Amazon under pressure
An Amazon under pressure has far-reaching impacts on 
the local environment and communities, as well as the 
global atmospheric system. These impacts include:

Loss of species and cultural ecosystem services
Biodiversity is under threat as the Amazon rain forest 
is home to more than 10% of the Earth’s terrestrial 
biodiversity (Guayasamin et al. 2021; WWF 2022). Loss of 
forest and forest degradation cause ecosystem disruption 
and loss of species. The removal of forests contributes 
greatly to habitat loss and places pressure on the fauna 
and fauna—some of which are unique species—living 
within the region. Reports indicate that over the past five 
decades, wildlife populations in Latin America and the 
Caribbean have declined by 95%, reflecting the severity 
of the biodiversity crisis in the region (WWF 2022). 
Based on species distribution modelling, Gomes et  al. 
(2019) predicted that deforestation and climate change 
could lead to a loss of 58% of Amazonian tree species 
by 2050. These predicted losses will not only threaten 
the survival of numerous species but also undermine 
essential ecosystem services that sustain IPLCs and 
regulate the global climate. The already existing food 
insecurity in the region (Cerri et al. 2018) is exacerbated, 
and the quality of life of the IPLCs who rely on the 
Amazon forest for their subsistence is reduced, forcing 
their displacement to larger cities and plunging them 
further into poverty (Maisonnave 2023). The extraction 
of non-timber forest products—a typical practice of local 
communities—that are derived from ecosystem services 
related to wild food, ornamental resources, and natural 
medicines, becomes more difficult due to their increasing 
scarcity with the clearing of forest (Antunes et al. 2021; 
Brandão et  al. 2022). Brandão et  al. (2022) estimated 

the loss of trees in the Amazon to lead to economic 
losses of between US$ 7.0 ×  108 to 8.7 ×  109 per year. As 
the forest provides cultural services for the Amazonian 
Indigenous populations, supporting their livelihoods, 
beliefs, and rituals, forest loss and/or conversion implies 
a major impact on cultural ecosystem service provision 
(Angarita-Baéz et al. 2017; Lessmann Escalona 2021).

Potential loss of the Amazon carbon sink
Apart from its socio-economic impacts, deforestation 
and forest degradation lead to a release of substantial 
amounts of  CO2 into the atmosphere, with significant 
long-term effects on climate change at global scales 
through reducing the C sink in the Amazon. Around 
16.4% of Brazil’s greenhouse gas emissions in 2019 
were caused by deforestation and fires occurring in 
the Amazonian region alone (Silva et  al. 2021). One of 
the reasons that the Amazon region is losing its C sink 
capability is the increase in the intensities of extreme 
droughts resulting in a decline in C sink strength 
(Machado-Silva et  al. 2021). Recent work has shown 
how increases in tree mortality due to hotter and drier 
conditions during the 2015–2016 El Niño led to a shut-
down of the Amazon C sink during this period (Bennett 
et al. 2023); this was, in fact, more marked in areas of the 
Amazon that already had a drier climate and indicates 
a concerning trend under a future warmer and drier 
climate.

Hydrological disruption
Additionally, the loss of trees disrupts hydrological 
cycles. Water vapour produced by transpiration forms 
the ‘flying rivers’ and is transported by wind to drier 
South American regions, particularly those with a strong 
agroindustry and is therefore directly responsible for 
roughly 70% of the continent’s gross domestic product 
(Getirana et al. 2021). If the Amazon rain forest continues 
to decline in area, this moisture transport process may 
be greatly reduced, since much of the moisture in this 
region comes from evapotranspiration from the forest, 
further compromising the occurrence of precipitation 
during the wet season of the central and southeast 
regions of Brazil and aggravating the current water crisis. 
Conversely, the regions where there is the most notable 
agricultural expansion (e.g. Brazilian Amazonian states of 
Rondônia, Mato Grosso, and Pará) are those where the 
largest decrease in yields due to reduced precipitation 
are predicted (Leite-Filho et  al. 2021). Lejeune et  al. 
(2015) analysed several studies involving numerical 
simulations that reduce or remove the entire Amazon 
forest and assessed the impact on the precipitation in 
South America, with an occurrence of more rain in the 
southern region of the continent and less rain in other 
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regions. This result was also observed in more recent 
studies, such as the work of Amorim et  al. (2019). The 
current rates of deforestation could lead to a climate 
tipping point in the near future (Lovejoy and Nobre 2019; 
Amigo 2020; Marques 2024). Forest reduction decreases 
the region’s albedo, increasing surface heat retention 
and, consequently, generating a positive feedback for 
global warming. It has been suggested that if 40% of 
the Amazon basin is deforested, a tipping point may be 
reached (Nobre and Borma 2009), leading to movement 
of the forest–savanna boundary or, in a worse-case 
scenario, large-scale forest dieback. Other authors feel 
that the tipping point has already been reached (Lovejoy 
and Nobre 2019) which is of great concern. In addition, 
it is necessary to assess whether the loss of moisture 
associated with deforestation in the Amazon forest will 
have an effect on the precipitation regime in other parts 
on the planet, since this change in evapotranspiration 
may compromise the global mass balance, given the size 
and thus importance of the Amazon rain forest.

Local climatic imbalances
In order to assess the influence of different deforestation 
scenarios in the Amazon on the precipitation regime in 
Brazil and South America, we conducted simulations 
using the Community Atmosphere Model (CAM 3.1) 
of the National Center for Atmospheric Research 
(Collins et  al. 2004), removing 15%, 50%, and 100% of 
the Amazon rain forest and replacing it with agricultural 
land in the simulations (Fig. 4). These three deforestation 
scenarios represent the current extent of forest loss 

(15%), a high-pressure scenario (50%), and a worst-
case scenario (100%). This model is part of the set of 
General Circulation Models of the atmosphere used 
by the Intergovernmental Panel on Climate Change 
(IPCC) and considers the functional types of vegetation 
for the year 2004 (Oleson et  al. 2010). To assess the 
impact of deforestation on precipitation in Brazil and 
South America, we initiated the model using average sea 
surface temperature (SST) conditions and integrated it 
over 17  months so that the differences in precipitation 
between a typical January with an intact (100%) Amazon 
rain forest (called the control case) and the same 
January with the three deforestation scenarios could be 
compared. The month of January was chosen because it 
is the month with the greatest amount of precipitation 
in the centre-west and southeast regions of Brazil, which 
have the greatest population densities in the country, the 
greatest rates of water withdrawal for irrigation, and the 
largest reservoirs for electricity generation, and which 
have recently experienced water crises (Nielsen et  al. 
2019; Getirana et  al. 2021). It is also important to note 
that the CAM 3.1 model only needs about three months 
of integration to be able to enter equilibrium with the 
ocean and generate the planetary cloud cover required 
for this type of study. The simulations considered all the 
other parameters of the earth system, such as SST, ice 
and cover, to be the same in all the simulations; thus, the 
only forcing evaluated and altered was the vegetation 
cover.

In the scenario with 15% deforestation, there is a sharp 
decline in precipitation in the states of Rio de Janeiro, 

Fig. 4 Changes in the functional types of vegetation for the simulations carried out in the NCAR/CAM 3.1 model, where the light blue represents 
regions of equatorial forest or rain forest and the brown colour represents areas of agricultural land. Control case map (a) and replacement of (b) 
15%, (c) 50%, and (d) 100% of the Amazon forest area with agricultural land in the simulations
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Espírito Santo, Minas Gerais, Mato Grosso do Sul, and 
Pará, with an increase in precipitation in the southern 
region of Brazil and in the states of Goiás, Tocantins, 
and part of Bahia (Fig.  5a). As deforestation increases, 
the regions with the least precipitation become more 
noticeable on the map, illustrating the importance of 
moisture from the Amazon rain forest in the country’s 
precipitation balance. In the scenarios with 50% and 
100% deforestation, in general, we see that only the east of 
southern Brazil, northern Goiás, south-central Tocantins 
and parts of Bahia, and Piauí show an increase in 
precipitation, with a decrease throughout the rest of the 
country, reaching a deficit of more than 100 mm  month−1 
in most of the southeast region of Brazil (Fig.  5b, c), 
which, if it were to occur persistently over a few years, 
could create an unprecedented water deficit in this 
region. This decrease in precipitation in the southeast is 
associated with the possible weakening of the Atlantic 
Convergence Zone, which is responsible for around 
40% of the summer precipitation in this region (Nielsen 
et al. 2016). It is important to emphasize that this trend 
of decreasing precipitation across a large part of the 
country, associated with deforestation in the Amazon, 
was noticed not only in this study but also in numerous 
others (Lejeune et  al. 2015; Ruiz-Vásquez et  al. 2020; 
Moreira 2024). The hypothesis explored in this study, as 
well as in others (Amorim et al. 2019; Smith et al. 2023), 
suggests that complete forest loss in the Amazon leads 
to an increase in surface temperature and a reduction in 
total precipitation. Furthermore, both the present study 
and that of Lejeune et  al. (2015) observed a local-scale 

decline in latent heat flux as a direct consequence of 
deforestation. Despite variations in model configurations, 
spatial resolutions, and methodologies, a consistent 
pattern emerges, highlighting the strong sensitivity 
of the regional climate to deforestation. The primary 
mechanism behind these findings is linked to alteration 
of the vegetation cover, whereby the replacement of 
forests with cropland or pasture leads to a decrease in 
surface roughness, leaf area index, and rooting depth. 
This, in turn, limits the amount of water vapour recycled 
into the atmosphere, reducing evapotranspiration and 
latent heat flux, which ultimately leads to a decline in 
precipitation (Foley et al. 2003; Cao et al. 2020; Moreira 
2024). Additionally, the increase in albedo associated 
with land cover changes, combined with the decrease 
in latent heat flux, is often offset by a rise in sensible 
heat flux, leading to a local increase in near-surface 
air temperature. The removal of roughness elements 
such as trees reduces surface obstacles that would 
otherwise facilitate heat transfer from the land surface 
to the atmosphere. Lejeune et al. (2015) also highlighted 
a relationship between heat fluxes and surface air 
temperature, demonstrating that while surface warming 
persisted year-round, the most pronounced anomalies 
occurred at the end of the dry season, when soil moisture 
levels were lowest. This aligns with von Randow et  al. 
(2004), who found that during the dry season, forested 
areas maintained evapotranspiration, whereas pastures, 
with shallow root systems, were unable to access deeper 
soil moisture reserves. While the simulated annual 
precipitation reduction was relatively small, the seasonal 

Fig. 5 Difference between accumulated rainfall (mm  month−1) in the month of January between the scenarios with (a) 15%, (b) 50%, and (c) 100% 
deforestation compared to the scenario with the original Amazon rain forest intact
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differences in climate responses to deforestation were 
significant for local ecosystems, particularly during the 
dry season, as was also observed in the studies by Swann 
et  al. (2015) and Smith et  al. (2023); in the latter case, 
these patterns were observed using present climate data 
rather than numerical simulations. The reality is that the 
simulations in this study, based on 15% deforestation, 
already mirror the unfortunate state of the Amazon, 
as current estimates indicate that deforestation has 
surpassed this threshold (Lapola et al. 2023). This allows 
for a meaningful comparison between our simulation 
results and present-day directly observed climatic data.

Beyond local impacts, this study also assessed the 
effects of deforestation on other regions of Brazil, 
considering the influence of large-scale atmospheric 
circulation patterns across South America. The findings 
indicate the presence of non-linear climate patterns in 
response to deforestation, likely driven by interactions 
between altered climate variables and changes in 
atmospheric circulation. These, in turn, generate further 
variations at the local scale, reinforcing feedback loops 
that exacerbate climate imbalances (Butt et  al. 2023). 
Finally, all studies consistently indicate a clear trend 
of rising temperatures and declining precipitation in 
the region, reinforcing the urgent warning about the 
detrimental impacts of deforestation on the regional 
climate.

The way forward for the Amazon
Recent years have seen increased environmental 
challenges, especially in Brazil since the weakening of 
the Forest Code and with much previous (Bolsonaro) 
governmental anti-environmental rhetoric, weakening 
of environmental laws, and increase in rates of 
deforestation (Nobre 2019; Silva Junior et  al. 2021; 
Dutra da Silva and Fearnside 2022; Rodrigues 2022). 
The current Lula government faces many environmental 
challenges (Fearnside 2023) and the 2023 Amazon 
Summit was a step in the right direction despite a lack 
of clear forward plans (Moutinho 2023; Marques 2024). 
The cumulative effects of deforestation can have far-
reaching consequences for both the environment and 
human well-being, emphasizing the importance of 
sustainable forest management and conservation efforts. 
One of the most effective ways to preserve the ecosystem 
services provided by the Amazon rain forest is to address 
inappropriate land-use changes. This will help maintain 
the Amazon region´s position as the largest planetary 
biodiversity hotspot. A significant decrease in Amazon 
deforestation could prevent it from turning into a 
savannah, and return this region to its capacity as a global 
C sink and not a C source, as it is progressively becoming.

The preservation of the Amazon forest in Brazilian 
territory depends on the political will of the government 
in office. More sustainable ‘green’ policies led to a 
decrease in deforestation rates in the period 2004 to 
2014, whereas an increase was seen from 2015 and 
particularly from 2019 onwards. Already, a downturn in 
the rates of deforestation is occurring since the new Lula 
administration (Fig.  2; Watts 2023). Policy responses 
to deforestation have shown varied effectiveness. 
Protected areas and public policy interventions, 
such as environmental enforcement and land tenure 
regularization, have demonstrated relative success 
in curbing deforestation in Brazil (Merkus 2024). 
For instance, federal enforcement policies, including 
fines and embargoes, have effectively weakened the 
relationship between global commodity markets and 
deforestation, particularly in critical regions like Pará and 
Mato Grosso (Assunção and Rocha 2019). An effective 
way to motivate the current government to embrace the 
preservation agenda is via embargos or trade restrictions 
on commodities (notably soy and beef ) that are produced 
illegally or in recently deforested areas (Gibbs et al. 2015; 
Ferrante and Fearnside 2022a). The Soy Moratorium, 
implemented in 2006, whereby signatory companies 
agreed not to buy soybeans cultivated in recently 
deforested areas, was a successful example of this, as was 
the beef Zero Deforestation Commitment (Rudorf et al. 
2012; Vallim and Leichsenring 2025). Currently, Pará 
state is implementing the ‘Sustainable Livestock Program’ 
to make the products from the cattle ranching traceable 
and guarantee that they are not leading to an increase in 
deforestation rates in the state (Pará 2023).

Another pathway is the active movement towards 
private conservation areas, as shown in several Brazilian 
ecosystems (e.g. da Silva et al. 2021; Stabille et al. 2022), 
where conserving native vegetation on private lands is 
an important mechanisms to protect biodiversity (De 
Marco Jr. et  al. 2023). An equally effective approach 
could be for local communities to formally commit to 
the preservation of given areas. Integrating privately 
conserved areas into a national protected area system 
can increase the success of large-scale conservation 
initiatives (da Silva et al. 2021) such as is required for the 
Amazon basin. However, because private protected areas 
are dependent upon the financial commitment of non-
governmental actors, and their legal status is unclear, 
their long-term role in forest conservation remains to be 
fully realized (López de la Lama et al. 2023), but should 
be explored and promoted further.

Moving forward, the value of the rain forests in 
the Brazilian Amazon to global biodiversity, climate 
regulation, and the well-being of IPLCs means that their 
conservation needs to be prioritized and implemented 
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through a combination of local and international efforts. 
This includes some key measures. The first is that Brazil 
should reinforce and enforce its environmental laws to 
protect the Amazon. This includes strict regulations 
against illegal logging, land encroachment, and 
deforestation. Also, efforts should also be made to prevent 
illegal activities with improved enforcement, and to hold 
accountable those responsible for environmental crimes 
(Coelho-Junior et al. 2022). Secondly, there is a particular 
need to strengthen laws that protect Indigenous 
peoples and their lands given the worrying increase in 
encroachment on these protected areas (Begotti and 
Peres 2019, 2020; Silva Junior et  al. 2023). These lands 
cover about one-fifth of the Brazilian Amazon and are 
an effective protection against deforestation although the 
effect of this barrier has been weakened in recent years. It 
is therefore important to restore, expand, and strengthen 
protection of these areas. There is also a need to support 
Indigenous communities´ land rights through involving 
these communities in decision-making processes, and 
provide resources to protect their territories. Moreover, 
implementing advanced monitoring systems, including 
satellite imagery and remote sensing technologies, can 
help identify and respond to deforestation in real time 
(Coelho-Junior et  al. 2022). A further key element is 
financing. Here, there is a need to develop financial 
mechanisms that reward rain forest conservation efforts. 
For example, creating incentives for landowners, farmers, 
and local communities to protect and restore the rain 
forest can help reduce deforestation rates. Payments 
for ecosystem services and C offset programs can be 
explored to incentivise conservation activities.

In recent years, the ‘bioeconomy’ concept has gained 
traction—this is the use of renewable biological and 
biotechnological resources for economic growth, while 
using these to address environmental challenges (Bugge 
et  al. 2016; Garrett et  al. 2024). Clearly, the Amazon 
region is abundant in such resources and the Brazilian 
government has instituted the National Bioeconomy 
Strategy (Brasil 2024). However, bioeconomies are not 
simply based on unsustainable extraction or cultivation 
of forest resources and need to consider the needs 
of IPLCs and harness their knowledge, while also 
reconfiguring economic models (Garrett et al. 2024). For 
the Amazon rain forest, the most appropriate conception 
would involve a bio-ecological bioeconomy defined as an 
economic system in which the criterion of sustainability 
is inextricably linked to the criterion of economic growth. 
The Amazon bioeconomy should be substantiated in an 
economy encompassing diversity of territories, peoples, 
knowledge, products, and markets. The forest products 
and services can be expanded, connecting the forest 
to people and entrepreneurs (Abramovay et  al. 2021; 

Gebara et al. 2023). As an example, rural communities of 
Mamirauá Sustainable Development Reserve have been 
using and managing species with medicinal properties 
that are on the pharmacology list of interest of the 
Brazilian National Health Surveillance Agency (Benitz 
et al. 2023).

Forest restoration is now firmly on the political agenda 
(e.g. the UN Decade on Restoration: https:// www. decad 
eonre stora tion. org, and the Bonn Challenge: https:// 
www. bonnc halle nge. org) and has a role in improving 
biodiversity metrics, ecosystem functioning, and human 
well-being in degraded forests of the Amazon. This 
may be through various approaches including natural 
regeneration, assisted regeneration, agroforestry, and 
plantations (Gastauer et  al. 2020; da Silva et  al. 2023). 
However, the rate of forest restoration in the Amazon 
is currently slow and we need more information on 
appropriate socio-economic conditions for successful 
regeneration with a focus on governance, management, 
and market issues as well as basic ecological 
understanding of which tree species should be planted 
where to obtain maximum benefits from restoration 
schemes. Restoration will only likely be successful with 
synergies among local governments, local people, and the 
private sector (Gastauer et al. 2020).

We emphasize that rain forest conservation is a global 
concern as the Amazon rain forest plays a vital role in 
regulating the Earth’s climate, since we were able to 
determine how the deforestation of the Amazon had a 
significant influence on the climate of the whole of Brazil 
in just 10 years of model integration (Fig. 5). In this way, 
studies involving earth system models should be carried 
out to better understand how this influence can spread to 
the climate of the entire planet over a longer timeframe.

Finally, greater international cooperation between 
Brazil and other countries is needed, both in terms 
of funding and expertise. Organizations, such as the 
United Nations, the World Bank, non-governmental 
organizations, and bi-lateral (country-to-country) 
support, can facilitate collaborative efforts. It is 
important to note that rain forest conservation requires 
a multi-faceted approach involving various stakeholders, 
including government bodies, local communities, 
NGOs, and the international community. We underscore 
the need for region-specific policy interventions that 
account for the diverse socio-economic, environmental, 
and institutional drivers of deforestation. Tailoring 
approaches to address the unique deforestation dynamics 
in each region is crucial to enhancing the effectiveness of 
conservation efforts and mitigating further forest loss. By 
combining strategies and stakeholders working effectively 
together, it is possible to protect the rain forests in Brazil 
and ensure their long-term sustainability.

https://www.decadeonrestoration.org
https://www.decadeonrestoration.org
https://www.bonnchallenge.org
https://www.bonnchallenge.org
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