Review

Understanding responses to climate-related water scarcity in Africa

Walter Leal Filho a, Edmond Totin b, James A. Franke c,d, Samora Macrice Andrew e, Ismaila Rimi Abubakar f, Hossein Azadi g,h, Patrick D. Nunn i, Birgitt Ouweneel j, Portia Adade Williams k, Nicholas Philip Simpson l*, The Global Adaptation Mapping Initiative Team

a European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Ulmenriet 20, D-21033 Hamburg, Germany
b Ecole de Foresterie Tropicale, Universite Nationale d'Agriculture du Benin, BP, 43, Ketou, Benin
c,d Department of the Geophysical Sciences, University of Chicago, Chicago, USA
d Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA
e Department of Ecosystems and Conservation, Sokoine University of Agriculture, Tanzania
f College of Architecture and Planning, Imam Abdulrahman Bin Faisal University (formerly, University of Dammam), P.O. Box 1982, Dammam 31441, Saudi Arabia
g,h Department of Geography, Ghent University, Ghent, Belgium
i Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
j School of Law and Society, University of the Sunshine Coast, Queensland, Australia
k CSIR-Science and Technology Policy Research Institute, Accra, Ghana
l Africa Climate and Development Initiative, University of Cape Town, South Africa

HIGHLIGHTS

• Climate-induced water scarcity is a widespread trend across Africa.
• Systematic review of responses to water scarcity shows many deficiencies.
• Planned adaptation lacks coordination at scale across key sectors and regions.
• Most responses include only minor adjustments to business-as-usual water practices.
• Improving institutional responses is key to adaptation to water scarcity.

ARTICLE INFO

Article history:
Received 10 August 2021
Received in revised form 13 September 2021
Accepted 14 September 2021
Available online 20 September 2021

Editor: Damia Barcelo

Keywords:
Water scarcity
Planned adaptation

ABSTRACT

Water scarcity is a global challenge, yet existing responses are failing to cope with current shocks and stressors, including those attributable to climate change. In sub-Saharan Africa, the impacts of water scarcity threaten livelihoods and wellbeing across the continent and are driving a broad range of adaptive responses. This paper describes trends of water scarcity for Africa and outlines climate impacts on key water-related sectors on food systems, cities, livelihoods and wellbeing, conflict and security, economies, and ecosystems. It then uses systematic review methods, including the Global Adaptation Mapping Initiative, to analyse 240 articles and identify adaptation characteristics of planned and autonomous responses to water scarcity across Africa. The most common impact drivers responded to are drought and participation variability. The most frequently identified actors responding to water scarcity include individuals or households (32%), local government (15%) and national government (15%), while the most common types of response are behavioural and cultural (30%), technological and infrastructural (27%), ecosystem-based (25%) and institutional (18%). Most planned responses target low-
1. Introduction

Around four billion people worldwide are currently living with water shortages and approximately half of those face water scarcity (Stringer et al., 2021; Tzanakakis et al., 2020). Changing rainfall patterns, declines in precipitation and runoff, and increased evapotranspiration rates attributable to climate change are the most likely physical drivers of future water scarcity in Africa (Gan et al., 2016; Markonis et al., 2021), a situation that will be exacerbated by human drivers like population increase (Ahmadalipour et al., 2019). But we know in Africa total amounts of water can mask variabilities in access and utility as water scarcity is determined by more than just physical amounts of bulk water, but also broader developmental dimensions such as governance, institutions, gender equality, poverty, security, education, and health (Asmali et al., 2021; Muller, 2019; Muller, 2020; Stringer et al., 2021). Further, climate change does not only affect the hydrological cycle, but it has also direct and indirect impacts on these societal drivers of water scarcity (Haughey et al., 2019; Hurlbert et al., 2019; Smith et al., 2019; K. Warner et al., 2019), and human responses to water scarcity can have compounding and cascading effects on concurrent and future response capacity, as well as on the resource itself (Cole et al., 2021; Simpson et al., 2021b; Simpson et al., 2020a; Simpson et al., 2020b). Understanding responses to climate-related water scarcity in Africa therefore requires exploration of types and scope of responses to climate impact drivers of water scarcity across a diversity of response contexts of vulnerability, inequality and inequity of water access.

There are a range of indicators for water scarcity relevant to Africa that concentrate on the physical components of water deficits, for example surface water availability (the difference between precipitation and actual evapotranspiration), as well as indicators that include biological responses to physical or climatological variables (Stringer et al., 2021). Falkenmark et al. (1989) estimated the average (global) renewable water need per capita per year to be 1700 m³. Countries whose renewable water supplies fall below 1700 m³ per capita per annum, the country faces ‘water deficit/shortage’: ‘water scarcity’ occurs when the water supplies drop below 1000 m³ per capita per annum (Naik, 2017). Water scarcity is largely due to the unequal distribution of water (Gunasekara et al., 2014; le Blanc and Perez, 2008). For example, in Northern Africa, the annual groundwater recharge is only 144–350 m³ per person, while other sub-regions range from 2400 to 9900 m³, far above the average requirement for human needs (Herbert and Döll, 2019; Naik, 2017). Estimated local water requirements for food production are over 2000 m³/person/year in sizeable parts of Africa, against an average of almost 650 m³/person/year in Europe and North America (Liu et al., 2017).

In Africa, agriculture is the largest water-use sector, with large populations dependent on rainfed-agriculture (Busby et al., 2014; Stringer et al., 2021; Tzanakakis et al., 2020). Further, climate change does not only affect the hydrological patterns, declines in precipitation and runoff, and increased evapotranspiration, institutions, gender equality, poverty, security, education, and health (Asmall et al., 2021; Muller, 2019; Muller, 2020; Stringer et al., 2021), and human responses to water scarcity can have compounding and cascading effects on concurrent and future response capacity, as well as on the resource itself (Cole et al., 2021; Simpson et al., 2021b; Simpson et al., 2020a; Simpson et al., 2020b). Understanding responses to climate-related water scarcity in Africa therefore requires exploration of types and scope of responses to climate impact drivers of water scarcity across a diversity of response contexts of vulnerability, inequality and inequity of water access.
Mabhaudhi et al., 2016). Rainfall volatility currently impacts about 93% of African agriculture (Besada and Werner, 2015). Projections indicate several parts of Africa are projected to suffer prolonged droughts and increased rainfall variability by 2025 (Dosio et al., 2019; Klatse et al., 2018) and water available for agriculture and domestic use will likely experience increasing constraints to access (Grasham et al., 2019; Matchaya et al., 2019; Singh et al., 2018). Water scarcity, therefore, has severe implications for food security and human vulnerability across the continent (Niang et al., 2014; Williams et al., 2018). Yet, where water resources, such as groundwater, can be quantified over time and space, global and Africa specific studies indicate potential for future adaptation to rely on zones identified for sustainable exploitation (Busico et al., 2021; Cuthbert et al., 2019; Kotchoni et al., 2019; Taylor et al., 2019).

Indicators from global assessments highlight Africa's critical water scarcity challenges and the fact that the continent is the second most arid after Australia (Besada and Werner, 2015; Dos Santos et al., 2017). Rapid population growth and urbanization have resulted in additional pressures on domestic water resources and, together with increased agricultural demand land use change, will likely remain dominant drivers of water scarcity on the continent; Africa's population is projected to double by the 2050s (Liu et al., 2017; Niang et al., 2014; Tabutin and Schoumaker, 2020). In the early 1990s, only eight African countries were estimated to be suffering from water scarcity (Naik, 2017), yet by 2017, an estimated 785 million people globally lacked access to safe and affordable water for domestic use, 40% of whom lived in Sub-Saharan Africa (SSA) (UNICEF and WHO, 2019). By 2030, about 250 million people may experience high water stress in Africa, with up to 700 million people displaced as water stress becomes locally impossible to cope with (Groth et al., 2020; Mpandeli et al., 2020; Naik, 2017).

Water scarcity has multiple dimensions of cause and effect and is further complicated by competition and trade-offs between sectors (Mpandeli et al., 2018; Rosa et al., 2020). The complexity of sector-specific risks affected by water scarcity, exemplified most clearly in the water-energy-food nexus, can create ‘wicked’ problems that confound the utility of trade-offs in planning responses (Nhamo et al., 2018; Romero-Lankao and Norton, 2018). Competition for water from agriculture, fishing, tourism, energy, and industries, for example, is increasing and threatening livelihood systems across Africa (Liu et al., 2017). These challenges will likely increase as demands for domestic, industrial, and agricultural water rise sharply, potentially by 40%, within the next decade (UNDESA, 2017). The integrated nature and multidimensionality of water usage demonstrates that responses to water scarcity are a critical component of effective adaptation with important co-benefits for other sectors directly or indirectly affected by water scarcity (Horne et al., 2018; Mugambiwa and Tririvangasi, 2017; Owen, 2020).

Water scarcity is a key theme for scholarship on water sector adaptive capacity (Siders, 2019). This is not surprising as responses to water scarcity can enhance or constrain development pathways affecting adaptation to climate change (Gajjar et al., 2019; Rao et al., 2019a). Yet leading empirical scholarship on adaptation lacks multi-sectoral evaluation of responses to water scarcity (Vincent and Cundill, 2021). We therefore need a broader understanding of the types and efficacy of responses in the sectors and geographies affected by water scarcity, particularly in Africa, the most affected and most exposed of the continents (Siders, 2019; Vincent and Cundill, 2021).

Based on the needs here outlined, this paper synthesizes current knowledge about water scarcity in Africa, and on the variety of responses. We first calculate trends of water scarcity, highlighting what we now understand of the historical, current and projected hydrological context of water scarcity and its spatial distribution across this continent. We then contextualize these trends by providing an overview of the range of impacts that water scarcity has had on Africa’s agriculture, cities, livelihoods and wellbeing, security, economies, ecosystems; sectors expected to be increasingly at risk (Field et al., 2014; IPCC, 2019b). Finally, a review of the literature identifies and assesses current responses to water scarcity in Africa. The paper concludes by identifying promising adaptation strategies from both planned and autonomous approaches to address future water scarcity. Their efficacy is evaluated in light of the need for responses to water scarcity that simultaneously reduce risk and vulnerability, develop resilient social systems, improve the environment, increase economic resources, and enhance governance and institutions (Owen, 2020).

2. Materials and methods

A mixed methods approach was used to synthesize current knowledge about trends in water scarcity in Africa, the range and types of past responses to water scarcity, and highlight promising responses to water scarcity that can inform future adaptation pathways.

First, we used the EM-DAT disasters data set to identify the number of people affected by severe droughts in Africa, highlighting the geographical spread of these over the past few decades, plausibly as a result of climate warming. EM-DAT records a drought disaster if local capacity overwhelmed, necessitating a request to national or international level for external assistance caused by an extended period of unusually low precipitation that produces a shortage of water for people, animals and plants (EM-DAT and CRED, 2020) (see Supplemental data 1).

To show current and projected trends in water scarcity, we calculated the Standardized Precipitation Evapotranspiration Index (SPEI) for the entire continent. This is calculated over a 12-month running window from the method of Vicente-Serrano et al. (2010) where PET is calculated using the Penman-Monteith formulation recommended by the FAO (Allen et al., 1998) (see Supplementary material Appendix F for climate models used). All models were resampled to 0.5 degree with bilinear interpolation for ensemble comparison. Standardized Precipitation Evapotranspiration Index (SPEI) can be modified with the actual evaporation (SPEAI). While both capture relevant features of drought (Homdee et al., 2016), SPEAI has been shown to be more meaningful in water-limited areas whereas SPEI is generally more suitable in energy-limited areas (Rehana and Monish, 2020). Most CMIP-6 models report actual evaporation (evspsbl, a key boundary condition for the atmospheric model) whereas comparatively few models report potential evapotranspiration (evspbsl).

To perform the qualitative analysis of responses to water scarcity, we used the Global Adaptation Mapping Initiative (GAMI) and a systematic literature review to assess evidence from the peer-reviewed literature about Africa between 2013 and July 2020. GAMI provides a global stocktake of human adaptation-related responses to climate-related changes that were documented in the peer-reviewed literature between July 2013 and Jan 2020 (Berrang-Ford et al., 2021a). It used bibliographic databases including Scopus, PubMed, Web of Science Core Collection, and Google Scholar to assess 48,316 scientific documents on adaptation published within this period (Berrang-Ford et al., 2021a). GAMI combined a novel typology for assessing empirical research documenting human adaptation globally with systematic review and machine-learning approaches to identify and synthesize 1682 articles (Berrang-Ford et al., 2021a). The breadth of GAMI’s stocktake is unmatched in terms of quantity of articles identified, screened and coded, highlighting its potential value to capture the breadth of the vast literature on adaptation on Africa (Fischer et al., 2020; Lesnikowski et al., 2020; Scheelbeek et al., 2021; Siatii et al., 2021; Thomas et al., 2021; Turek-Hankins et al., 2021). After Asia (34%), Africa recorded the second highest number of adaptation articles identified by GAMI, accounting for 32% of the total GAMI database (Berrang-Ford et al., 2021b). Further, 34% of GAMI articles concerning Africa included evidence of risk reduction, indicating the potential utility of the data set for assessment and pathway development (Berrang-
Ford et al., 2021b; Lesnikowski et al., 2020). It identified 518 articles indicating adaptation actions in Africa (Fischer et al., 2020; Lesnikowski et al., 2020), from which we extracted a sub-set of 151 articles, selecting those articles tagged as ‘Africa’ and ‘responses to drought’ OR ‘responses to water scarcity’ for synthesis of evidence on responses to water scarcity from all sectors covered by GAMI: namely water and sanitation; poverty, livelihoods, and sustainable development; food, fibre, and other ecosystem products; cities, settlements, and key infrastructure; health, well-being, and communities; ocean and coastal ecosystems; terrestrial and freshwater ecosystems (Siders et al., 2020).

A further review of the literature identified responses to water scarcity that were excluded by the climate change and water sector focus of GAMI to capture broader responses to water scarcity including those associated with governance or tourism sectors. Peer-reviewed articles were identified through Web of Science, Google Scholar and Scopus between January 2013 and July 2020 using the following search string: Topic = (water AND Africa), Abstract = (drought AND response OR adapt*), Topic = (adapt*), Region = (Africa), Country = (“Country_Name(s)”). The review included publications written in English and excluded non-human responses to water scarcity. It identified 280 articles which were then screened to leave 138 articles. These articles were combined with the GAMI articles. Articles with less than one paragraph about response and 49 duplicates were excluded to give a total of 240 articles for review (see Supplementary data 2).

Articles were then assessed for their content on responses to water scarcity considering the geographic focus, inclusion of local knowledge and indigenous knowledge, who is responding, what responses are documented, what is the extent of the adaptation-related responses, and whether or not responses are reducing risk? (see Appendix A for detailed coding instructions and definitions and Appendix B for categories of types responses to water stress in Africa used in the analysis). Special attention was given to articles indicating adaptation that explicitly confront inequality, injustice and inequitable power dynamics in responses to water scarcity (Owen, 2020).

It is difficult to know whether absence of adaptation reporting reflects a lack of adaptation activities or a lack of reporting in the peer-reviewed literature (Berrang-Ford et al., 2019; Biesbroek et al., 2018; Williams et al., 2021). The dominance of English-language publications favours anglophone Africa in the GAMI database. Despite such limitations, the focus on peer-reviewed literature aligns with the assessment needs of large climate and water assessments such as those of the IPCC that make judgements based on scientific consensus, making their findings easily translatable for policy and practice.

3. Results

We first present an overview of trends of water scarcity, highlighting the historical, current and projected hydrological context of water scarcity and its spatial distribution across in Africa. We then provide an overview of the range of impacts that water scarcity has had on Africa’s sectors increasingly at risk from water scarcity. Then, we present the results of a review of the literature to identify and assess the range of responses to water scarcity in Africa.

3.1. Water scarcity in Africa

Population growth is the dominant factor affecting water availability when computed using the Falkenmark Index. Localized population growth in northern South Africa, around Lake Victoria, in Ethiopia, and in many parts of west Africa has caused category changes in water availability that have exposed a growing number of people to both scarcity and absolute scarcity (Fig. 1).

Extreme droughts and heatwaves, both of which are projected to intensify under climate change, can decrease crop production due to more variable rainfall and soil moisture (D’Odorico et al., 2018). For example, declining trends in rainfall in some regions of North Africa are projected to continue in a warming world (Seif-Ennasr et al., 2016). This trend restricts groundwater recharge, exacerbates groundwater salinization and groundwater depletion (Hamed et al., 2018), and increases the risk of reduced soil moisture (Petrova et al., 2018).

Fig. 3 illustrates significant wetting trends that have been observed in parts of Central East Africa, West Africa and southern Angola, and Zambia and significant drying trends. Future climate change will exacerbate drought susceptibility for most of Africa, with more CO2 plausibly aggravating the impact. Strong increases in precipitation under warming, especially near the equator, reduce drought risk for a narrow band of latitudes but does not outweigh the increased potential evapotranspiration under warming for much of the continent. Even strong mitigation measures (SSP126) are projected to lead to mild increases in drought susceptibility for much of Africa.

Elevated CO2 increases the occurrence of extreme wet years and extreme dry years in climate models where general wetting trends are projected. In Central Ethiopia for example (Fig. 3, panel a), CO2 forcing drives a mean increase in SPEI (Fig. 2, panel c). Yet drought severity also increases; the number of months below -1.5 tripling in the last 50 years of the time series compared to the first 50 years. This will likely have an impact on the severity of water scarcity extremes as drought magnitude of -2 or greater was not observed at this location in the historical simulation but appears 10 times in the second half of the century in this climate model realization.

Other areas are projected to see little increase in mean precipitation and to experience stronger drought trends. Permanent or near permanent meteorological drought develops around the end of the century as you move away from the equator. This behaviour of extremes is generally consistent across climate models (see Supplementary material Appendix F, Fig. F.1-5 for more climate model examples).

3.2. Sectoral impacts of water scarcity in Africa

Here we briefly outline the impacts of water scarcity food systems, cities, livelihoods and wellbeing, security economies and ecosystems. The vignettes of impacts of water scarcity on these key sectors contextualise the detailed section on responses identified in the systematic review and presented thereafter. Figs. 4 and 5 present an overview of the population affected by national level drought disasters in Africa.

Although it is difficult to directly estimate the social and economic impact of droughts (Enenkel et al., 2020), the EM-DAT database on natural disasters estimates that over 256.3 million people were affected by severe drought in Africa between 2000 and 2020 (EM-DAT and CRED, 2020, see Supplementary data 1). Although accounting for only 11% of frequency of natural hazard events within this time period, droughts caused 46% of all deaths – the most attributed to a single natural disaster type in Africa (EM-DAT and CRED, 2020).

3.2.1. Impact of water scarcity on food systems

Agriculture is the largest water-use sector in Africa and globally (D’Odorico et al., 2020). Water withdrawal for agriculture accounts for at least 60% of total water use in a majority of African economies, with 10 countries exceeding 90% (FAO and AQUASTAT, 1999). Agriculture is dominated by rainfed crops, making Africa economies particularly vulnerable to hydrological anomalies (FAO, 2018; FAO and ECA, 2018; FAO, 2020). Farmers are already feeling the effects of climate change on crop production through changes in precipitation variability (Kouressy et al., 2019; Sultan et al., 2019) and livestock fodder availability (Sloat et al., 2018; Stanimirova et al., 2019). For example, two thirds of farmers surveyed in Nigeria correctly noted a reduction in (and delayed onset of) early growing season rainfall and identified this as a major cause of yield losses in recent years (Ayanlade, 2016; Ayanlade and Ojebisi, 2020). Unreliable rainfall and prolonged drought have caused severe shocks to productivity in the Maradi Region of Niger, significantly affecting the agro-pastoralist communities’ livelihoods (Ado et al., 2019). Pastoralists are also perceiving changes in water
availability and report more erratic, reduced rainfall and more frequent, prolonged droughts (Kimaro et al., 2018; Sanogo et al., 2017).

3.2.2. Impact of water scarcity on cities

Urban water supplies are unsafe and intermittent across the continent. Urban households experience chronic shortages in drinking water and frequent water rationing, with unplanned/informal urban settlements receiving less water than planned ones (Abubakar and Zumla, 2018). Few peer-reviewed studies on drought risks for urban dwellers have been carried out in Sub-Saharan Africa (Grasham et al., 2019). Yet, a common proxy for low water quality can be seen in human health indicators such as cholera. Although cholera is usually associated with rainfall, it is also widely experienced during periods of droughts when water is collected from substantially contaminated ponds and streams (Grasham et al., 2019). Given such contextual exposures and vulnerabilities, water scarcity in Africa needs to be understood within broader social and developmental contexts. Further, a lack of effective water delivery, especially under shock or stress conditions (Simpson, 2019; Simpson et al., 2019b; Simpson et al., 2020a; Simpson et al., 2020b), has led scholars to indicate management and
governance failures as a leading causes of water scarcity (Muller, 2019; Rugemalila and Gibbs, 2015).

3.2.3. Impact of water scarcity on livelihoods and wellbeing

There is growing evidence suggesting that drivers of vulnerability to water scarcity include non-climatic drivers, such as age, income, and gender (Grasham et al., 2019). Social capital, poverty, and gender depress women’s agency and pathways to overcome water scarcity in rural areas (Pearson et al., 2015), particularly when household structures and social norms entrench patriarchal arrangements such as those of title and tenure (Rao et al., 2019b). As men are more likely to migrate away from water-scarce regions, women are often left behind without an adequately supportive social infrastructure (Rao et al., 2019b). The burden of water scarcity is felt hardest by the primary water collector in rural and urban contexts (Grasham et al., 2019). For such reasons, water scarcity responses need to go beyond supply, technological, planning and management imperatives (Muller, 2019; Scheba and Millington, 2019; Vanham et al., 2018) to also consider their social capital, institutional, livelihoods and wellbeing dimensions (Nhamo and Agyepong, 2019; Ouweneel et al., 2020; Petrie, 2017; Simpson et al., 2020a; Simpson et al., 2019c; Ziolkowska, 2016).

3.2.4. Impact of water scarcity on conflict and security

Many studies highlight a possible relationship between temperature, water scarcity and societal conflicts within Africa, manifesting as antisocial behaviour and violence (Chitonge, 2020; Gleick and Heberger, 2014; Regan and Kim, 2020). Water conflicts have increased among different sectors and users: agriculture, energy production, urban consumption, conservation, pastoralism and wildlife (Almer et al., 2017; Liu et al., 2017). The rise of social tensions in many dryland countries of Sub-Saharan Africa in recent decades has also led scholars to suspect a likely causal relation with environmental changes (Okpara et al., 2015; Selby and Hoffmann, 2014a; Selby and Hoffmann, 2014b). For instance, Lake Chad’s shrinking (around 90% since the 1960s) has increased water and food insecurity, creating conditions for social conflicts and insecurity (Okpara et al., 2015). Similarly, in
2012, more than 100 Kenyans died in violence arising from water conflicts involving farmers and pastoralists (Gleick and Heberger, 2014). Warming trends since 1980 have elevated conflict risk in Sub-Saharan Africa by 11% (Carleton and Hsiang, 2016), and climate change may increase conflict risk across the region by 54% by 2030 (Burke et al., 2014).

3.2.5. Impact of water scarcity on economies

Water scarcity leads to increasing water costs per unit, affecting water access (Abubakar, 2019; Rusca and Schwartz, 2016). In addition, it is projected that high variability in Africa’s water basins could reduce hydropower revenue ranging between 5% and 60% by 2050 (Cervigni et al., 2015). This variability will amount to a projected three-fold increase in consumer expenditure for energy due to the dwindling production of hydropower (Cervigni et al., 2015). Revenues from the agricultural output are also projected to decrease by 10% to 20% by 2050, as irrigation capacity falls (Cervigni et al., 2015). These projections highlight the potential severity of the risk to economies and livelihoods in Africa from water scarcity.

3.2.6. Impact of water scarcity on ecosystems

Population growth has placed additional pressure on African ecosystems over the past century, with severe degradation in several countries (UNDP-UNEP, 2011). Unplanned and uncontrolled cropland expansion, cattle grazing, urbanization, and ineffective water management plans have severely degraded the natural landscapes and rivers within the Lake Victoria Basin, for example; biodiversity loss and water pollution have received most attention here (Hecky et al., 2010). A 57% increase in the irrigated agricultural sector has also resulted in a significant decrease in natural forests in south-eastern Africa and grasslands in eastern regions and the Sahel (Brink and Eva, 2009), which has had cascading effects for hundreds of millions of Africans who rely directly on ecosystem services to meet their essential needs.

3.3. Responses to water scarcity in Africa

The results of the systematic review of the evidence of human responses to water scarcity in Africa are presented below. First, the actors, targets and types of response to water scarcity are presented, highlighting the key actors and specific actions. A deeper analysis of response types is then provided in the following section examining the extent, depth, scope, speed and efficacy of types of response to water scarcity (see Appendix A for definitions). Finally, different types of responses to water scarcity are evaluated by presenting the evidence of risk reduction or maladaptation associated with each response type.

3.3.1. Distribution and types of response to water scarcity

Of 55 African countries, 33 (60%) have studies reporting on human adaptation strategies for coping with water scarcity; the most common are those involving responses to climate impact drivers, with drought and precipitation variability being the next most common. The leading
10 African countries with studies on human responses to water scarcity are Kenya, Tanzania, Ethiopia, South Africa, Niger, Uganda, Ghana, Malawi, Zimbabwe and Nigeria in that order. This trend aligns with the geographical distribution of adaptation scholarship in Africa noted elsewhere and is therefore more a function of active research than the proportional number of responses to water scarcity (Vincent and Cundill, 2021). 23 African countries have fewer than two articles identified here.1 Actors responding to water scarcity are individuals or households (32%), local government (15%), national government (15%), civil society (sub-national 10%, national 8%), international or multinational governance institution (6%), sub-national governments (5%), other2 (5%) and private sector (3%).

Most planned responses to water scarcity target low-income communities (31%) with particular emphases on the most vulnerable within communities, such as women (20%), indigenous (13%), elderly (5%) and youth (5%). Many activities focus on coping strategies and sustaining living conditions such as food, shelter, and other livelihood activities. Very few studies target migrants, ethnic minorities or those living with disabilities.

Documented response types include behavioural and cultural (30%), technological and infrastructural (27%), ecosystem-based (25%) and institutional (18%). Behavioural and cultural responses mostly focus on subsistence and semi-subsistence farmers and the consequences of water scarcity on crop failure or livestock death, with livelihood diversification and migration a common response (for example, Schofield and Gubbels, 2019). Technological and infrastructural responses focus mainly on ways to access and conserve water (Bzikova et al., 2015), enhance farm productivity, and improve drought resilience of crops and animals (for example, Bedelian and Ogutu, 2017). Ecosystem-based responses include working with native species to protect soil, stabilize banks, protect against wind and fluvial erosion (for example, Kupika et al., 2019), and clear invasive species that destabilize ecosystems (for example, Richter et al., 2017).

Water management commonly includes forms of mulching that maintain in situ vegetative residues (for example, Feleke et al., 2016; Gebru et al., 2019). Institutional responses cover a variety of actions including: disaster management for droughts (and floods), water and groundwater management, increasing dam reservoir water storage, early warning systems, crops, food and seed storage systems, soil and crop research, water-user associations, water tariffs, water demand management policy, integrated coastal zone management, and the incorporation of risk reduction into development planning or zoning schemes (for example, Leshikowski et al., 2013; Siders, 2019). Articles linking responses to water scarcity which concentrate on a particularly exposed or vulnerable developmental goal in Africa include food security (22%), poverty (17%), clean water and sanitation (12%), consumption and production (8%), health and wellbeing (8%), work and economic growth (8%), sustainable cities and ecosystem services (7%).

3.2.2. Scope and efficacy of types of response to water scarcity

Only 10% of planned water scarcity adaptation efforts have been implemented widely. Approximately 90% of the responses identified in the literature lack consistent coordination for implementation at scale across all relevant sectors and regions affected by water scarcity and lack legal and institutional frameworks for their operation (Siders, 2019; Vincent et al., 2020; Ziervogel et al., 2019). This trend has many implications, one of which is that it undermines the role of agroforestry in building livelihood resilience to drought in many semi-arid areas, as seen in Kenya (Quandt et al., 2017). A lack of coordination is particularly clear from the inconsistent engagement and acknowledgement of local and indigenous knowledge and practices which has led to inconsistent integration of these with formal risk reduction and adaptation strategies (Grey et al., 2020).

Almost 20% of responses are still in the early ‘planning or vulnerability assessment phase’, indicating that there has been limited coordinated implementation or only local ad-hoc implementation. For example, building an indigenous agropastoral adaptation framework to climate change in the North West Region of Cameroon (Azibo and Kimengsi, 2015), or ad-hoc uptake of rain water harvesting and saving technologies in Tharaka South, Eastern Kenya (Muru-Mung’ang’a et al., 2017). Almost half the responses (47%) are in the ‘planning and early implementation phase’ in which there is widespread recognition among decision-makers of the need for response measures and there is evidence of at least some coordinated implementation, though measures are currently still ad-hoc in their nature. For example, soil and water conservation in western Africa (Sietz and Van Dijk, 2015), recognition of the need to advance beyond coping responses to drought in the Gambia (Yafia, 2013), and ad-hoc uptake of conservation farming across the continent (Ahmed, 2016; Kpadonou et al., 2017; Olaniyan, 2017; Swanepoel et al., 2018). Fewer than one fifth of responses (19%) demonstrate ‘expanding’ implementation where there is evidence that adaptation has become mainstreamed into decision-making processes and that responses demonstrate coordination and are as part of a coherent response strategy. Examples of expanding responses include integrated landscape restoration practices and rainwater harvesting and management in arid and semi-arid areas of Ethiopia (Woldearegay et al., 2018), and early warning systems of drought in East Africa (Funk et al., 2017; Nahayo et al., 2017; Zake and Hauser, 2014).

Most articles (73%) reported coping and autonomous responses that showed only minor adjustments to business-as-usual water practices, suggesting limited adaptation depth (for example, Azibo and Kimengsi, 2015). Business-as-usual coping and autonomous responses risk falling short of the IPCC definition of adaptation (IPCC, 2019a), instead respond to water scarcity in the short to medium term without planning explicitly for current and projected risks from climate change such as community managed storage and irrigation systems in Tunisia and Ethiopia (Alemyehuel and Biewert, 2017; I. Ferchichi et al., 2017), and reactive destocking and migration in Chad (Okpara et al., 2016).

One quarter of articles (25%) identified responses indicating ‘medium depth’ adaptation capacity, such as the expansion of existing practices rather than the development of entirely new practices: for example, replacement of traditional seed distribution systems in community seed fairs in Kenya which safeguard and promote local seed varieties better suited to the local climate (Amaru and Chihet, 2013). Only 2% displayed high depth adaptation capacity: for example, observable transformation in response type from trial and error to a well-planned and participatory approaches, transition from soil and water conservation to water harvesting, extensions from small-scale to large-scale and landscape-level interventions, scaling from individual or isolated technologies to integrated and linked approach with technologies proven to be effective and climate-smart, and greater nuance in moving from blanket approaches to contextualised technology selection and implementation (for example, Amaru and Chihet, 2013; Chisadza et al., 2013; Goulden et al., 2013; Woldearegay et al., 2018).

Most studies (71%) report limited scope for adaptation responses and are confined to local areas, such as a town, city or suburb, a catchment, or a handful of local communities within a confined sector, such as agropastoralists (for example, Kassian et al., 2016). A common relationship also exists between actions with limited scope and the use of local and indigenous knowledge (for example, Mashiha, 2019). For adaptation actions with ‘medium scope’, studies indicate that the ability to scale is contingent on the role of the State and the degree of

1 African countries with less than 2 two peer-reviewed and English language articles on responses to water scarcity (2013–2020) are: Algeria, Mozambique, Angola, Burundi, Cabo Verde, Comoros, Congo, Cote d’Ivoire, Djibouti, DRC, Eritrea, Gabon, Guinea, Lesotho, Liberia, Libya, Madagascar, Mauritius, Sao Tome and Principe, Seychelles, Sierra Leone, Somalia, Togo.

2 Other actors include: Universities and research communities, meteorological service departments, customary or traditional leaders, women’s cooperatives, indigenous peoples, water user associations, multilateral development agencies (United Nations Development Programme’s Community Water Initiative and Global Environment Facility’s Small Grants Programme), agricultural extension agents, and sub-watershed committees.

W. Leal Filho, E. Totin, J.A. Franke et al. Science of the Total Environment 806 (2022) 150420
its engagement with local actors (El Jihad, 2016). Only 3% of articles indicated adaptation actions with broad scope – that is, responses are implemented at a large scale and result in system-wide changes that might involve an entire organization, a country or large region, and a large population. In these cases, local knowledge is noted to be component to successfully scale to a broader scope (Dobson et al., 2015; Sietz and Van Dijk, 2015).

93% of adaptation actions indicate ‘slow’ and ‘incremental change’, emphasizing the generally slow pace of behavioural and cultural determinants of change, a trend also seen in urban areas (for example, England et al., 2018). Medium and high-speed responses are commonly top-down and include the development of infrastructure or institutional and governance reforms with ambitious goals like altering water-use behaviours through changes in the water tariff model (for example, Ouweneel et al., 2020; Simpson et al., 2019c).

3.3.3. Risk reduction and maladaptation of responses to water scarcity

61% of studies found that the responses to water scarcity reduced risk while about one third (35%) either showed no evidence or did not report on risk reduction. By linking knowledge of the local specifications of these drivers to regional and global patterns of vulnerability, our understanding of land-based adaptation could be significantly enhanced. In Chen and Davis (2019) for example, the rehabilitation of the ancient cascade water supply scheme increased both water availability and sustainability of water supply, highlighting the critical roles that local and indigenous knowledges can play in reducing contemporary risk. In general, the contextualised integration of scientific, technological and local knowledge is seen as the most effective means of risk reduction (for example, Ojyoi Mercy and Mnwenge Kahinda, 2015; Opare, 2018; Quandt et al., 2017).

Almost one fifth (19%) of articles identified maladaptation associated with one or more dimensions of responses to water scarcity. Types of maladaptation in Africa are often related to environmental degradation, developmental challenges and systemic vulnerability (Antwi-Agyei et al., 2018; Magnan et al., 2016). Many autonomous actions are not consistent with (outmoded) governance and institutional frameworks, leading some actions to conflict with legal and governance directives (for example, Kassian et al., 2016; Matchaya et al., 2019; Ziervogel et al., 2019).

Migration responses to water scarcity in arid and semi-arid regions are associated with conflict and growing insecurity in receiving communities, increasingly gendered water access, increased divorce rates, and a loss of solidarity and skills (for example, Abubakar, 2019; Ngarava et al., 2019; Rao et al., 2019b; Sititi et al., 2021). Water management responses have also been linked with unintended consequences of insecurity and conflict (for example, Okpara et al., 2015; Powell et al., 2017). Modification of food consumption to deal with drought-induced harvest losses can cause serious productivity, health and physical and mental development problems, especially in young children (for example, Godsmark et al., 2019; Yaffa, 2013). Increased access to groundwater through new technologies has often been associated with the depletion of groundwater (Comte et al., 2016; I. Ferchichi et al., 2017; Houéménou et al., 2020). Unequal access to groundwater subsequently exacerbates disparities between farmers and affects their capacity to cope with water scarcity (A. Ferchichi et al., 2017). Efforts to reduce poverty can also undermine other gains: for example, in Botswana owning fishnets strongly suggests a non-farm adaptation strategy, yet such a strategy can lead to overfishing (Nkuba et al., 2019).

4. Discussion

The following discussion reflects on our analysis of the literature and highlights the strengths and weaknesses of both ongoing and planned responses to water scarcity in Africa (see Appendix C for overview of examples of local responses to water scarcity in Africa). Then we synthesize and reflect upon the efficacy of identified responses highlighting, wherever relevant, their contributions to reducing risk and vulnerability, developing resilient social systems, environmental improvement, increasing economic activities and enhancing governance and institutions.

4.1. Planned adaptation to water scarcity

Africa showcases a range of global best-practice examples of water planning and management: for example, the urban wastewater management in Windhoek, Namibia (van Rensburg, 2016) and the growing distribution of drought-tolerant maize varieties in Kenya (Simmowe et al., 2020). Public investment in water infrastructure in Africa has generally favoured capital-intensive and infrastructure-focused projects, especially those aligned with high-profile political objectives, rather than (also) addressing governance and the root institutional causes of water mismanagement (Crow-Miller et al., 2017). As elsewhere in the world, common responses to water scarcity in Africa have traditionally involved building large dams with supply volume calculations guided by historical records of hydrological flow, projected consumption needs, and population growth (Muller, 2019; Tzanakakis et al., 2020). Yet, it is increasingly recognised that this approach is no longer sufficient to address current and projected water scarcity and may, in some instances, reduce water availability in particular areas instead of increasing it (Muller, 2020; Regan and Kim, 2020). Thus, design for supply needs to now incorporate interannual climate variability and longer-term projections of climate change and climate extremes (Jump et al., 2017; Schewe et al., 2019). For example, the informed planning for water resource management infrastructure on Benin’s Ouémé River (Lawn and Tamini, 2019).

Questions about the appropriateness and environmental impact of large dams have led to their justification on novel grounds such as energy sovereignty, as demonstrated by Ethiopia’s Grand Renaissance Dam and Tanzania’s planned Rufiji Hydro project (Roussi, 2019; Siderius et al., 2021; J. Warner et al., 2019). These new perspectives are potentially compromising the goals of (transboundary) risk reduction, environmental, governance and vulnerability imperatives of effective adaptation as water planning is subordinated to political and national energy interests. As a consequence, water infrastructure managers face the challenge of re-negotiating political objectives while meeting both the material and organizational challenges of water supply and service delivery within a context of growing risk and scarcity (Cervigni et al., 2017; Lempert et al., 2015; Muller, 2020; Padowski et al., 2016; Sridharan et al., 2019). Governance and institutional challenges to planning for water scarcity are further compounded by the few instances of participation of end-users and inclusion of broader stakeholders in centralized water planning and decision-making across the continent (Cornforth et al., 2021; Hellberg, 2019; Rugemalila and Gibbs, 2015; Taylor et al., 2021).

Global studies of agriculture have quantitatively demonstrated that efficient irrigation and soil management, water harvesting and storage, infrastructure improvements, crop management, and removal of alien invasive vegetation can all increase water use efficiency and enhance water availability during times of particular scarcity (Richter et al., 2017). In Africa, efforts to sustain agricultural production include expanding groundwater-fed irrigation, something that is historically common to North Africa (Kuper et al., 2017) and southern Africa (Cobbing and Hiller, 2019). Irrigation is used to counter crop losses through evapotranspiration and achieve maximum production in a particular growing environment (Ambika and Mishra, 2020; Mancuso et al., 2015). Nevertheless, intensive groundwater withdrawals to address acute water scarcity may increase the risk of groundwater depletion (de Graaf et al., 2019) and amplify the threat of saline intrusion in coastline areas from sea-level rise (Hamed et al., 2018; Ouhamdouch et al., 2019).

Infrastructural responses to future water scarcity, based on lessons learnt during the 2015–2018 Cape Town drought, have been developed
and include investments in treated effluent systems (Kaiser and Eberhard, 2019). Wastewater reuse is now increasingly being recognised as a viable and appropriate measure for urban areas (CoCT, 2019; Currie et al., 2017; Drangert and Sharatchandra, 2017; Nagara et al., 2015). Recycling treated wastewater is prominent in the City of Cape Town’s new Water Strategy as the city seeks to become a ‘water sensitive city’ by 2040 (CoCT, 2019; Kaiser and Eberhard, 2019). Cape Town’s Water Strategy further includes desalination plants, water recycling, and adjustments in groundwater extraction to increase flexibility and redundancy in the water supply systems (Taing et al., 2019).

During Cape Town’s worst drought on record (2015–2018), centrally-governed behavioural changes and a highly effective communications programme were credited for saving this city of four million people from running dry, by reducing water-use by more than half (Madonsela et al., 2019). The city’s average daily consumption dropped from approximately 1200 million litres (ML) in 2015 to just 500 ML in 2018 (Muller, 2019; Taing et al., 2019). Restricting agricultural water use was supported by a range of government measures (such as punitive charges for high domestic water users) that were implemented to ensure compliance with the general need to significantly reduce consumption (Ouweneel et al., 2020). The Cape Town municipality also improved water infrastructure and management, monitoring, education, and communication (Rodina, 2019a; Rodina, 2019b). This integrated approach with both technological oriented actions and water governance system are judged as having been highly effective in promoting water conservation and dealing with extreme water scarcity.

It is important to note that the majority of planned adaptation showing promise of risk reduction at current and future warming levels is generally constrained to highly capacitated governance, technological and institutional conditions reflecting a small proportion of Africa’s total population affecting their broader feasibility across the continent which concurs with Williams et al. (2021).

4.2. Autonomous and informal responses to water scarcity

Most articles (73%) identified here report coping and autonomous adaptation actions that show little change from business as usual responses to water scarcity (for example, Azibo and Kimengsi, 2015).

Farming practices responding to water scarcity increasingly include the adoption of drought-tolerant crops that use less water and thereby mitigate against both water scarcity and food insecurity (Berhane, 2018; Hadebe et al., 2017; Mbogo et al., 2014). A recent success story highlights the potential for scaling-up the use of drought-tolerant maize varieties in Kenya (Simtowe et al., 2020). Conservation or regenerative agriculture can also improve infiltration and soil moisture retention through mulching and no-tillage approaches (Lal, 2015), which have been a rapid uptake in Zimbabwe, Zambia, and Ethiopia (Rocksström and Falkenmark, 2015) and extension most other SSA countries (Chomba et al., 2020).

Approaches that enhance soil moisture content are particularly important as most agriculture in Sub-Saharan Africa depends on moisture held in the soil (Rocksström and Falkenmark, 2015). Collecting runoff, improving the infiltration, and managing land, water and crops across watersheds increases moisture from rain held in the soil (Bedek et al., 2019; Leaf Filho and de Trincheria Gomez, 2018a). Terracing such as Fanya-Juu terraces of Machakos, Kenya, and conservation tillage improves soil moisture retention, while rainwater harvesting tanks and other sub-surface storage types can improve small-scale agricultural productivity and resilience to drought (Bedek et al., 2019; Leaf Filho and de Trincheria Gomez, 2018a).

In Ethiopia’s Tigray Region, indigenous water strategies such as percolation pits and ponds, check-dams, and deep trenched bunds have been successful at landscape restoration indicating their potential for larger scale environmental outcomes (Woldearegay et al., 2018). For arid and semi-arid areas of Kenya, sand dams have been used to augment subsoil rainwater storage for dryland agroecosystems. They support consistently higher vegetation biomass rates with vegetation able to recover more quickly after drought and enhancing resilience (Ryan and Elsner, 2016).

These rural responses include a range of local innovations and adoption of new technologies which align with customary responses (Apraku et al., 2018). Responses informed by local and indigenous knowledge (LIK) include early warning systems predicting seasons (Jiri et al., 2015; Nkomwa et al., 2014), rainwater harvesting practices (Makate, 2019; Mapumulo et al., 2016), stockpiling of grains, conservation farming practices like dry planting (Grey et al., 2020), as well as traditional preservation of food through sun drying, smoking and salting (Kamwendo and Kamwendo, 2014; Mugambiwa, 2018). Yet very little is known of the role LIK plays in urban responses to water stress (Mapunda et al., 2018) nor the adaptation limits of such practices, given the need to integrate projected risks with historically-informed LIK (Kettle et al., 2014).

Climate change literacy varies across the continent with an average climate change literacy rate of only 37% (Simpson et al., 2021a). Although knowledge of anthropogenic climate change can potentially enhance adaptation when combined with perception of climate change at the local level and understanding of climate risk (Simpson et al., 2021a), without climate change literacy, autonomous and informal responses such as those listed here may already have reached their adaptation limits.

Especially over the past few decades, as rural–to–urban migration rates have increased throughout Africa, the challenge of providing sufficient clean water to urban populations has increased sharply (Chitonge, 2020). The challenge is multidimensional and affected by both climate change and local developmental challenges such as governance, infrastructure development, finance, planning and management, which in turn affect the equitable access to water resources (Ahmed et al., 2016). Consequently, many African cities have a large informal water supply sector, particularly in peri-urban areas (Mapunda et al., 2018).

When considering autonomous responses to water scarcity, it is important to consider the range of both public and private actors and their variable adaptive capacities. Responses to the Cape Town drought (2015-2018) led to unprecedented uptake of greywater systems, rainwater harvesting tanks and boreholes to secure residents’ water requirements (Simpson et al., 2019a; Simpson et al., 2020a). These off-grid and autonomous strategies to secure household-level water supply transformed many water-access arrangements and the associated governance and tariff structure, undermining the municipality’s financial sustainability (Ouweneel et al., 2020; Simpson et al., 2019c). The fight against future water scarcity in Africa will likely see further contestation between models of public and private water delivery. For those technologies which allow for decentralization and off-grid responses to water scarcity, the partial and gated nature of elite responses are likely to challenge centralized water distribution and governance arrangements (Simpson et al., 2019a). While municipalities or utilities need to recognise autonomous actors and their responses in the fight against water scarcity, planned responses need to accommodate and coordinate with their efforts in order to appropriately align private water supplier capacities with broader societal needs (Leal Filho et al., 2019).

This paper has some limitations. Firstly, it looked at the overall framework of water scarcity in Africa, without going deep into the sub-regional differences across the continent. Secondly, whereas it paid attention to the impacts of water scarcity in agriculture, it did not examine the consequences to crop varieties. Despite these constraints, the paper offers a comprehensive overview of the issues surrounding water scarcity in Africa, and draws attention to some of the issues which need to be considered, in order to systematically address it.

5. Conclusion

Water scarcity challenges in Africa are exacerbated by rapid population growth, widespread poverty, inequitable access, climate change,
and a generally low capacity to develop and manage adequate water infrastructure. These challenges are multidimensional, with significant implications for the agricultural, human development, socio-economic, and ecosystem outcomes. Accounting for more than 80% of water use, it is especially important to address water scarcity in Africa’s agricultural sector as it negatively influences food security and threatens millions of people’s livelihoods. Yet responses in the literature have also displayed the importance of inter-sectoral and multi-level understanding of water scarcity and the interconnectedness of risk between various and sometimes competing users.

Centralized and top-down governance responses have not ensured equitable and sustainable water access to date. Planned approaches have promoted responses that are capital-intensive and infrastructure-focused, especially those aligned with high-level political objectives, rather than addressing root causes of water scarcity in Africa, particularly historical mismanagement, and the comparative lack of institutional capacity at the local level. Planned responses have also showed little recognition or integration of local and indigenous knowledge into scalable water practices. They further need to avoid creating new risks to water or compounding existing ones and thus being maladaptive.

Successful autonomous and local-level responses and development interventions in rural areas have been noted to include drought-tolerant crops which use less water, on-farm ponds, flood-based farming, more efficient low-cost irrigation technologies, and afforestation. Where these responses integrate risk projections, they are likely to be robust as adaptation options. In urban areas, treated wastewater reuse, rainwater harvesting, reverse osmosis desalination, and behavioural change are all promising adaptation strategies. Yet our analysis of the literature provided no evidence of the efficacy of autonomous responses at future global warming levels. In addition, there is limited understanding of the effectiveness of responses foregrounding local and indigenous knowledge in addressing projected risks outside historical ranges of variability.

These findings underscore the dangers of separating (or ring-fencing) responses to water scarcity from competing challenges to food security, urbanization, desertification, and human or state security. Addressing water scarcity can open new opportunities for African societies to foster socio-economic development and offer new perspectives regarding human health, agriculture, economy, peace, and regional stability.

The paper has some “take home” lessons. Firstly, there is a need for coordinated institutional responses in addressing matters related to water scarcity. This involves not only government agencies which need to put the right policies in place, but also regional and local stakeholders on the other. Secondly, it is important to correlate water availability – including groundwater – with efficient water use to maximise and safeguard sustainable access for all users. Finally, the experiences gathered showed that water governance and management need to go hand in hand, to increase the availability of water, both to provide water security and to address the poverty which water scarcity is associated with.

One of main challenges for adaptation for the coming decade is to extend planned adaptation at the local level and better integrate projected risk of climate change and variability into local autonomous responses. Advancing climate change literacy rates and extension of climate information services provides two low-hanging opportunities that will enhance platforms for adaptation at future warming levels. This holds potential to help reverse current trends of water scarcity and achieve a more efficient, successful, and fair distribution of water resources across Africa. Future work should focus the evidence limitations of policy (and top-down decision-making) in deploying technologies and responses to water scarcity in Africa and establishing the adaptation limits of responses to water scarcity at future global warming levels.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2021.150420.

Funding

NPS’s contribution to this work was carried out with financial support from the UK Government’s Foreign, Commonwealth & Development Office and the International Development Research Centre, Ottawa, Canada (Grant No. 109419-001). RDCEP is funded by the NSF through the Decision Making Under Uncertainty programme (grant #SES-1463644). JAF was supported by the NSF NRT programme (grant no. DGE-1733539) and the NSF Graduate Research Fellowship Program (grant #DGE-1746045). WLF’s work was supported by The International Climate Change Information and Research Programme (KCIIP).

CRediT authorship contribution statement

Conceptualization: WLF, ET, NPS.
Validation: NPS, ET, JAF, BO, WLF.
Formal analysis: NPS, WLF, JAF, BO, PN, PAW.
Resources: NPS, ET, JAF, PAW.
Data curation: NPS, IRA, ET, PAW.
Writing - Original draft: WLF, NPS, ET, JAF, BO, PN, SMA, IRA, PAW, HA.
Visualization: JAF, BO, NPS.
Project administration: WLF, ET, NPS.

Declaration of competing interest

The authors have no competing interests, or other interests that might be perceived to influence the interpretation of the article. The authors have no non-financial competing interests, or other interests that might be perceived to influence the interpretation of the article.

Appendix A. Coding and analysis of literature on responses to water scarcity in Africa

1. General
1.1. Description of topic summarized in document
1.2. Region(s) or geographic focus of adaptive responses documented
1.3. Sectoral focus of adaptive responses documented
1.4. Cross-cutting themes
1.5. Consideration of local knowledge
1.6. Consideration of Indigenous knowledge
2. Who is responding?
2.1. Who is engaging in adaptation responses?
2.2. Is there evidence that particular vulnerable groups are targeted in adaptation responses?
3. What responses are documented?
3.1. What types of responses are reported?
 Behavioural/cultural: Enabling, implementing, or undertaking lifestyle and/or behavioural change
 Ecosystem-based: Enhancing, protecting, or promoting ecosystem services
 Institutional: Enhancing multilevel governance or institutional capabilities
 Technological/infrastructure: Enabling, implementing, or undertaking technological innovation or infrastructural development.

(continued on next page)
Appendix B. Documented range of types responses to water stress in Africa

<table>
<thead>
<tr>
<th>Response types</th>
<th>Count</th>
<th>Percentage</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioural/cultural</td>
<td>65</td>
<td>30%</td>
<td>Well management, soil water conservation, market gardening, Income diversification, Social networks (loans/remittance), migration (often rural to urban migration), traditional rainwater harvesting techniques, supplementary feeding, feed preservation, changing the reproduction season, keeping locally adapted breeds and destocking of goat flock size, transhumance, agroforestry, area closure, increase non-farm income, self-help micro-credit groups.</td>
</tr>
<tr>
<td>Technological/infrastructural</td>
<td>58</td>
<td>27%</td>
<td>New seed varieties or irrigation techniques, public infrastructure that address changes in water availability, drought-resistant and other varieties better suited to climate change, instilling eroded parts of a riverbank, change of water source to groundwater, boreholes, drip irrigation, rainwater harvesting</td>
</tr>
<tr>
<td>Ecosystem-based</td>
<td>54</td>
<td>25%</td>
<td>Water management, planting grass to stabilize the riverbanks, use living vegetation or the residues from harvested crops to protect soil from the wind, mulching, rotating crops grown in rows with cover crops such as grasses or legumes grown on the same field every other year</td>
</tr>
<tr>
<td>Institutional</td>
<td>39</td>
<td>18%</td>
<td>Disaster management for floods and droughts, water conservation, groundwater management, increasing dam reservoir water storage, early warning systems for crops, food and seed storage systems, soil and crop research, Water users association, water tariffs, water demand management policy, integrated coastal zone management, incorporating risk reduction into development planning or zoning schemes</td>
</tr>
</tbody>
</table>

Appendix C. Examples of local responses to water scarcity in Africa

<table>
<thead>
<tr>
<th>Response type</th>
<th>Purpose</th>
<th>Location</th>
<th>Reference (exemplar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural/agricultural</td>
<td>Rainwater harvesting (basic: On-farm ponds / Rooftop catchments + Manual pumping + Low-cost drip irrigation)</td>
<td>Subsistence agriculture; cultivating drought tolerant and low water use crops; food security</td>
<td>Continent-wide; Machakos, Kenya</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Hadebe et al., 2017; Leal Filho et al., 2019; Leal Filho and de Trincheria Gomez, 2018b)</td>
</tr>
</tbody>
</table>
References

Selby, J., Hoffmann, C., 2014a. Beyond scarcity: rethinking water, climate change and con-

Slovenia: rethinking climate change, conflict and security. Geopoli-
cia, K.J., Shearing, C.D., Cirolia, L.R., 2019c. Municipal

Selby, J., Hoffmann, C., 2014b. Rethinking climate change, con-

