

Übungsaufgaben zum Vorkurs Mathematik

im

Fachbereich Fahrzeugtechnik und Flugzeugbau

Abschnitt A: Umformungen, Potenzen, Wurzeln, Logarithmen

Aufgabe A1

Berechnen Sie ohne Benutzung eines Taschenrechners:

a)
$$z = \frac{\left(\frac{1}{16} - \frac{1}{9} + \frac{1}{12}\right)}{\left(\frac{2}{7} - \frac{1}{6}\right)}$$
 b) $z = \frac{\left(4^4 \cdot 10^2 \cdot 27\right)^5}{\left(10 \cdot 9 \cdot 4^3\right)^7}$ c) $z = 0, 1^{-3} - 8^{\frac{4}{3}}$

b)
$$z = \frac{\left(4^4 \cdot 10^2 \cdot 27\right)^5}{\left(10 \cdot 9 \cdot 4^3\right)^7}$$

c)
$$z = 0, 1^{-3} - 8^{\frac{4}{3}}$$

d)
$$z = \frac{\sqrt{\frac{5}{8}} + \sqrt{\frac{8}{5}}}{\sqrt{10}}$$

Aufgabe A2

Stellen Sie die Zahl ohne Exponenten dar:

a)
$$z = \left[\left(\frac{1}{5} \right)^{-3} - 89 \right]^{-\frac{3}{2}}$$
 b) $z = \left[18 + \left(\frac{1}{3} \right)^{-2} \right]^{-\frac{2}{3}}$

b)
$$z = \left[18 + \left(\frac{1}{3}\right)^{-2}\right]^{\frac{2}{3}}$$

Aufgabe A3

Vereinfachen Sie:

a)
$$z = \frac{3 \cdot a \cdot b}{a \cdot b - b^2} + \frac{3 \cdot b^2}{b^2 - a \cdot b}$$
 b) $z = \frac{\frac{a + b}{a - b} - \frac{a - b}{a + b}}{1 - \frac{a - b}{a - b}}$

b)
$$z = \frac{\frac{a+b}{a-b} - \frac{a-b}{a+b}}{1 - \frac{a-b}{a+b}}$$

c)
$$z = \sqrt[3]{2 \cdot c \cdot \sqrt{d} - \sqrt{4 \cdot c^2 \cdot d - 8}} \cdot \sqrt[3]{2 \cdot c \cdot \sqrt{d} + \sqrt{4 \cdot c^2 \cdot d - 8}}$$

Aufgabe A4

Vereinfachen Sie die Ausdrücke (ohne Taschenrechner):

a)
$$p = \sqrt[3]{\frac{a^{\frac{4}{n}} \cdot \sqrt{b} \cdot b^{-3m}}{b^{-\frac{5}{2}} \cdot \sqrt[n]{a}}}$$
 b) $q = \sqrt{\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}}$

$$p) \quad q = \sqrt{\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}}$$

Vereinfachen Sie folgende Ausdrücke:

a)
$$p = \frac{\sqrt{3}+1}{\sqrt{3}-1} - 2$$
 b) $\frac{\sqrt{x} + \frac{2}{\sqrt{x}}}{3 \cdot \sqrt{x} - \frac{1}{\sqrt{x}}} \cdot (3x^2 - x)$; $x > \frac{1}{3}$

c)
$$r = \sqrt{7b} \cdot \sqrt{5ab} \cdot \sqrt{35a}$$
 ; $a,b > 0$

Aufgabe A6

Vereinfachen Sie folgende Ausdrücke:

a)
$$p = \ln(3) + \ln(4) - \ln(6) + \ln(\sqrt{3} \cdot \sqrt{2}) - \ln(\frac{\sqrt{2}}{\sqrt{3}})$$

b)
$$q = \sqrt{3 \cdot \ln(a \cdot b) - \ln\left(\sqrt{\frac{a^{-2}}{b^2}}\right)}$$
 ; $a \cdot b \ge 1$

c)
$$r = \frac{\sqrt{2}}{a} \cdot \sqrt{\frac{a^{\frac{3}{2}} \cdot \sqrt{a} - b \cdot \ln(e^b)}{\left(1 + b \cdot a^{-1}\right) \cdot \left(1 - \left(\frac{a}{b}\right)^{-1}\right)}}$$

Aufgabe A7

Vereinfachen Sie durch Umordnen, Ausmultiplizieren oder Kürzen (ohne Rechner):

a)
$$p = (e^{0.7} + e^{-0.7})^2 - (e^{0.7} - e^{-0.7})^2$$

b)
$$q = \frac{1}{4} (e^{-x} + e^{x}) \cdot (e^{y} - e^{-y}) - \frac{1}{4} (e^{x} - e^{-x}) \cdot (e^{-y} + e^{y})$$

c)
$$r = \frac{\left(e^{2ax} - e^{4ax}\right)^{\frac{3}{2}}}{\sqrt{1 - e^{ax}} \cdot \sqrt{1 + e^{ax}}}$$

Zerlegen Sie die folgenden Ausdrücke in Faktoren:

a)
$$a \cdot x + \frac{x}{b} - \frac{a}{y} - \frac{1}{b \cdot y}$$
 b) $c^4 - \frac{1}{d^4}$ c) $(c+d)^4 - (c-d)^4$

b)
$$c^4 - \frac{1}{d^4}$$

c)
$$(c+d)^4 - (c-d)^4$$

d)
$$c^2 + 8c - 20$$

Aufgabe A9

Zerlegen Sie die folgenden Ausdrücke in 3 Faktoren:

a)
$$a^5 + a^4 + a^3 - a^2 - a - 1$$

b)
$$a^5 + a^4 - a^3 - a^2 - a + 1$$

Hinweis: Zuerst $a^3 - 1$ ausklammern und dann $a^3 - 1$ zerlegen.

Aufgabe A10

Zerlegen Sie soweit wie möglich in Faktoren bzw. bilden Sie quadratische Ergänzungen:

a)
$$p = a \cdot x^2 + 3 \cdot a \cdot x^3 - a \cdot x^4$$
 b) $q = \frac{-4b - 2b^3 - \frac{6}{b}}{10b^2 + 8b}$

$$(a) \quad q = \frac{-4b - 2b^3 - \frac{6}{b}}{10b^2 + 8b}$$

c)
$$r = \frac{\frac{1}{9s^2} - \frac{1}{6s^4} + \frac{7}{12s^6}}{\frac{50}{6s^4} + \frac{5}{3s^5} + \frac{1}{12s^6}}$$

Aufgabe A11

Formen Sie die gegebenen Zahlen so um, dass sie einen rationalen Nenner (ohne Wurzelausdrücke) erhalten:

a)
$$\frac{1}{3+2\cdot\sqrt{2}}$$

b)
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}$$

a)
$$\frac{1}{3+2\cdot\sqrt{2}}$$
 b) $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ c) $\frac{2\cdot(2-\sqrt{2})}{\sqrt{2}-1}$

d)
$$\frac{(3-\sqrt{2})\cdot(4-\sqrt{2})}{(2-\sqrt{2})}$$
 e) $\frac{1}{(\sqrt{2}-1)^3}$ f) $\frac{(\sqrt{2}+1)^3}{(\sqrt{2}-1)^3}$

$$e) \frac{1}{\left(\sqrt{2}-1\right)^3}$$

f)
$$\frac{(\sqrt{2}+1)^3}{(\sqrt{2}-1)^3}$$

Zeigen Sie (ohne Benutzung eines Rechners), dass folgende Aussagen wahr sind:

a)
$$\sqrt{5+2\cdot\sqrt{6}} = \sqrt{2} + \sqrt{3}$$

a)
$$\sqrt{5+2\cdot\sqrt{6}} = \sqrt{2}+\sqrt{3}$$
 b) $\sqrt{14+6\cdot\sqrt{5}} + \sqrt{14-6\cdot\sqrt{5}} = 6$

c)
$$\frac{\sqrt{27-10\cdot\sqrt{2}}-\sqrt{11-6\cdot\sqrt{2}}}{\sqrt{18+8\cdot\sqrt{2}}-\sqrt{6+4\cdot\sqrt{2}}}=1$$

Aufgabe A13

Führen Sie die Division durch:

a)
$$(x^2 - x^{-2}): (x^{-1} + x^{-2})$$
 b) $(x - x^{-2}): (1 - x^{-1})$

b)
$$(x-x^{-2}):(1-x^{-1})$$

Aufgabe A14

Vereinfachen Sie:

a)
$$y = (1-x^2)^3 - (x^2-1)^3 - (x^2+2x+1) \cdot (1-x^2) \cdot (1-x)^2$$

b)
$$y = \frac{1}{\left(1 + \sqrt{1 - x}\right)^2} + \frac{1}{\left(1 - \sqrt{1 - x}\right)^2}$$

Aufgabe A15

Vereinfachen Sie jeweils die Gleichungen und stellen Sie fest, ob es ganzzahlige Zahlenpaare (p,n) gibt, welche die Gleichungen befriedigen.

a)
$$p = \frac{1}{4} \cdot \left\{ \frac{1}{3} \cdot \left[\frac{1}{2} \cdot (n-4) - 2 \right] - 1 \right\}$$

a)
$$p = \frac{1}{4} \cdot \left\{ \frac{1}{3} \cdot \left[\frac{1}{2} \cdot (n-4) - 2 \right] - 1 \right\}$$
 b) $p = \frac{1}{2} \cdot \left\{ \frac{1}{2} \cdot \left[\frac{3}{4} \cdot (n-1) - 2 \right] - 3 \right\}$

c)
$$p = \frac{1}{2} \cdot \left\{ \frac{2}{3} \cdot \left[\frac{3}{4} \cdot (n-3) - 2 \right] - 1 \right\}$$

Formen Sie nach y um:

$$x = \ln\left(\frac{\sqrt{y^2 + 1} + 1}{y}\right) \quad ; \quad y > 0$$

Aufgabe A17

Vereinfachen Sie den Ausdruck:

$$A = \ln\left(\frac{1 + \sqrt{1 - x^2}}{x}\right) + \ln\left(\frac{1 - \sqrt{1 - x^2}}{x}\right)$$

Aufgabe A18

Berechnen Sie $\lg(n)$ für n = 4.5 und 6 unter Verwendung von $\lg(2)$ und $\lg(3)$.

Aufgabe A19

Stellen Sie die Gleichung jeweils nach a, b und c um:

a)
$$a - \frac{(a+b)}{c} = b - \frac{(a-b)}{c}$$
 b) $\frac{2 \cdot \sqrt{c}}{a} = \sqrt{\frac{b}{2c-b}}$

b)
$$\frac{2 \cdot \sqrt{c}}{a} = \sqrt{\frac{b}{2c - b}}$$

Aufgabe A20

Drücken Sie x durch y aus:

$$a) \quad y = \frac{x+a}{x-a}$$

b)
$$y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$$

c)
$$y = \frac{\sqrt{a} - \sqrt{x}}{\sqrt{a} + \sqrt{x}}$$

Abschnitt B: Geraden, Parabeln, Kreise

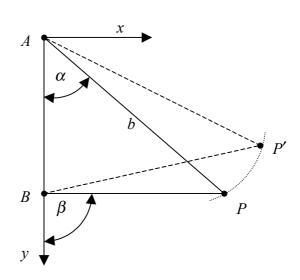
Aufgabe B1

Vom Punkt P(2|0,5) wird in Richtung wachsender x-Werte eine Gerade zu der Geraden mit der Gleichung $y=\frac{1}{2}x+2$ gezogen, welche diese unter einem Winkel von 10° schneidet. Wo liegt der Schnittpunkt?

Aufgabe B2

Die Parallelenpaare $\{y=x+1 \ , \ y=x+2\}$ und $\{y=-\frac{1}{2}x+3 \ , \ y=-\frac{1}{2}x+5\}$ erzeugen aus ihren Schnittlinien ein Parallelogramm. Bestimmen Sie dessen Flächeninhalt.

Aufgabe B3


Das Dreieck mit den Punkten A(1|1), B(3|2) und C(4|6) wird unter einem Winkel von -30° zur x-Achse schraffiert. Wie viele Schraffurgeraden mit Abstand d=0,1 benötigt man, wenn eine der Geraden durch den Punkt A verläuft?

Aufgabe B4

Auf der Kurve mit der Funktionsgleichung $y=\sqrt{x+1}$ sind 3 Punkte $P\left(1|\sqrt{2}\right)$, $Q\left(1,5|\sqrt{2,5}\right)$ und $R\left(2|\sqrt{3}\right)$ vorgegeben. Wo schneiden sich die Mittelsenkrechten der Strecken \overline{PQ} und \overline{QR} ?

Aufgabe B5

Der bewegte Punkt P wird im Abstand von $\Delta t=1s$ zweimal von A und B aus angepeilt ($d=\overline{AB}=1000m$). Dabei ergeben sich $\left\{\alpha_1=70^\circ,\beta_1=90^\circ\right\}$ und $\left\{\alpha_2=71^\circ,\beta_2=92^\circ\right\}$. Berechnen Sie die Abstände zwischen A und P (P') und die mittlere Geschwindigkeit von P.

Aufgabe B6

Vereinfachen Sie die Funktionsgleichung und zeichnen Sie die zugehörige Kurve:

a)
$$y = \frac{x^3 - 2(x-1)^3 + (x-2)^3}{x^3 - 3(x-1)^3 + 3(x-2)^3 - (x-3)^3}$$
 b) $y = \frac{x^3 - 1}{x^2 + x + 1}$

b)
$$y = \frac{x^3 - 1}{x^2 + x + 1}$$

Aufgabe B7

Bestimmen Sie die Nullstellen und die Scheitelpunktskoordinaten von:

$$y = (x+2)^2 + 7(x^2-4)$$

Aufgabe B8

Die Gerade $y = m \cdot x$, m > 0 soll den Kreis $(x-4)^2 + y^2 = 1$ nur einmal berühren. Wie groß ist m?

Aufgabe B9

Berechnen Sie die Berühr- und Schnittpunkte:

- a) Wo schneidet der Kreis $(x+2)^2 + (y-2)^2 = 1$ die Gerade y = -1, 1x 0, 2?
- b) Wo schneiden sich die Kreise $(x-1)^2 + y^2 = 4$ und $(x+2)^2 + (y-0,5)^2 = 9$?
- c) Welche der Parabeln $y^2 = 2x + c$ berührt den Kreis $x^2 + y^2 = 16$ nur an einer Stelle? Berechnen Sie c und die Berührungsstelle x_0 .

Abschnitt C: Gleichungen

Aufgabe C1

Lösen Sie folgende Gleichungen nach x auf:

a)
$$3x-7=12x+4$$

$$b) \frac{m \cdot x - b}{n \cdot x + c} = a^2$$

c)
$$\frac{4x}{\frac{1+x}{1-x}+1} = -2x+10$$

d)
$$\frac{2}{1 - \frac{3}{2 + \frac{7}{3 - x}}} = -1$$

Aufgabe C2

Berechnen Sie x aus:

a)
$$\frac{5}{x-1} + \frac{3}{x+2} - \frac{8}{x+3} = 0$$
 b) $\frac{9x-7}{3x-2} - \frac{4x-5}{2x-3} = 1$

b)
$$\frac{9x-7}{3x-2} - \frac{4x-5}{2x-3} = 1$$

Aufgabe C3

Berechnen Sie x und y aus den Gleichungen:

$$\frac{x}{a+b} + \frac{y}{a-b} = 2a$$

$$\frac{x}{a+b} + \frac{y}{a-b} = 2a \quad \text{und} \quad \frac{x}{a-b} - \frac{y}{a+b} = 2b \quad , \ |a| \neq |b|$$

Aufgabe C4

Berechnen Sie x und y aus:

a)
$$\frac{3}{x} + 2y = 10$$

b)
$$\frac{1}{x} + \frac{1}{y} = 7$$

$$\frac{2}{x} - 5y = \frac{7}{2}$$

$$\frac{2}{x} - \frac{1}{y} = 5$$

Berechnen Sie x aus:

a)
$$\frac{\sqrt{x}+3}{4} = \frac{4\sqrt{x}-2}{9}$$

b)
$$\frac{a}{a+b} + \sqrt{\frac{ax+b}{a+b}} = 1$$

Aufgabe C6

Berechnen Sie x aus:

$$\frac{\sqrt{2+x} + \sqrt{2-x}}{\sqrt{2+x} - \sqrt{2-x}} = \frac{3}{2}$$

Aufgabe C7

Lösen Sie folgende Gleichungen nach der reellen Größe x auf:

$$a) \quad \sqrt{x-9} = \frac{20}{\sqrt{x}}$$

b)
$$\sqrt{2 + \frac{3}{x^2}} = x$$

a)
$$\sqrt{x-9} = \frac{20}{\sqrt{x}}$$
 b) $\sqrt{2+\frac{3}{x^2}} = x$ c) $\frac{x+a}{\sqrt{x^2-a^2}} = 2$

Aufgabe C8

Berechnen Sie die Unbekannte x aus den Gleichungen:

a)
$$\sqrt{x-5} + \sqrt{x+19} = 2 \cdot \sqrt{x+6}$$

a)
$$\sqrt{x-5} + \sqrt{x+19} = 2 \cdot \sqrt{x+6}$$
 b) $2 \cdot \sqrt{4x-15} + \sqrt{25x+39} = 9 \cdot \sqrt{x-1}$

c)
$$a \cdot \sqrt{x + 4ab} + b \cdot \sqrt{x - 4ab} = (a + b) \cdot \sqrt{x + 1}$$
 d) $\sqrt{a - x} + \sqrt{b - x} = \sqrt{a + b}$

d)
$$\sqrt{a-x} + \sqrt{b-x} = \sqrt{a+b}$$

e)
$$\sqrt{x+9} + \sqrt{x+29} = \sqrt{x-3} + \sqrt{x+57}$$
 f) $\frac{\sqrt{x+1} + \sqrt{x-6}}{\sqrt{x+10} + \sqrt{x-11}} = 1$

f)
$$\frac{\sqrt{x+1} + \sqrt{x-6}}{\sqrt{x+10} + \sqrt{x-11}} = 1$$

g)
$$\sqrt{16+3\cdot\sqrt[3]{3x+12}} = \sqrt{16+\sqrt[3]{111x+174}}$$

Aufgabe C9

Lösen Sie nach x auf:

$$\frac{1}{d \cdot \sqrt[3]{x}} - 4 \cdot x^{\frac{2}{3}} = \frac{a^2}{\sqrt[3]{x}}$$

Lösen Sie die Wurzelgleichungen:

a)
$$\frac{x}{2} + 5 - \sqrt{25 - x^2} = 0$$
 b) $3x - 5 - \sqrt{25 - x^2} = 0$ c) $x - 7 - \sqrt{25 - x^2} = 0$

b)
$$3x-5-\sqrt{25-x^2}=0$$

c)
$$x-7-\sqrt{25-x^2}=0$$

Aufgabe C11

Lösen Sie folgende Gleichungen nach y auf:

a)
$$x^{\frac{1}{2}} - y^{\frac{1}{2}} = 1 + y$$

b)
$$x^{\frac{1}{4}} - 2 \cdot (x \cdot y)^{\frac{1}{2}} + y^{\frac{1}{4}} = 1$$

a)
$$x^{\frac{1}{2}} - y^{\frac{1}{2}} = 1 + y$$
 b) $x^{\frac{1}{4}} - 2 \cdot (x \cdot y)^{\frac{1}{2}} + y^{\frac{1}{4}} = 1$ c) $x^{\frac{1}{2}} \cdot y - y^{\frac{1}{3}} - x^{\frac{1}{3}} \cdot y^{-\frac{1}{3}} = 0$

Aufgabe C12

Berechnen Sie x (ohne Benutzung eines Rechners):

a)
$$x = 2 \cdot 10^{(2 \cdot \lg 2)}$$

b)
$$x = 3 \cdot 10^{(-2 \cdot \lg 3)}$$

a)
$$x = 2 \cdot 10^{(2 \cdot \lg 2)}$$
 b) $x = 3 \cdot 10^{(-2 \cdot \lg 3)}$ c) $x = \sqrt[3]{10^{\left[\frac{1}{2}(\lg 2 + \lg 32)\right]}}$

d)
$$x = \sqrt{(\sqrt{10})^{\lg 1}}$$

d)
$$x = \sqrt{(\sqrt{10})^{\lg 16}}$$
 e) $x = 2 \cdot 10^{\left(1 + \frac{1}{2}\lg 4\right)} - 10^{\left(\lg 3 + \lg 13\right)}$

f)
$$x = \lg\left(\frac{10}{a}\right) \cdot \lg(10 \cdot a) + (\lg a)^2$$

Aufgabe C13

Ermitteln Sie x aus:

a)
$$\lg(x+1)^2 = \lg 2 + \lg(x+1) + \lg(x-1)$$
 b) $\lg(x+1) = \lg 3 - \lg(x-1)$

b)
$$\lg(x+1) = \lg 3 - \lg(x-1)$$

Aufgabe C14

Lösen Sie die logarithmischen Gleichungen:

a)
$$\lg(x-2) - \frac{1}{2} \cdot \lg 4 = \frac{1}{3} \cdot \lg 125 - \lg(x+1)$$
 b) $\frac{1}{\lg x+1} - \frac{3}{\lg x-3} = 2$

b)
$$\frac{1}{\lg x + 1} - \frac{3}{\lg x - 3} = 2$$

Aufgabe C15

Berechnen Sie x aus $\log_3 x - 2 \cdot \log_x 3 = 1$.

Bestimmen Sie x und y aus:

$$5 \cdot \log_4 x - 2 \cdot \log_4 y = 16$$
 und $11 \cdot \log_4 x + 2 \cdot \log_4 y = 16$

Aufgabe C17

Lösen Sie folgende Gleichungen nach x auf:

a)
$$2^x \cdot 3^{6x} = 10$$

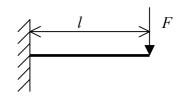
a)
$$2^x \cdot 3^{6x} = 10$$
 b) $2 \cdot e^{-x} - 4 \cdot e^{3x} = 0$

c)
$$a = \frac{e^{ax} - e^{-ax}}{e^{ax} + e^{-ax}}$$
 (Wie groß darf a sein?)

Aufgabe C18

Lösen Sie die Exponentialgleichungen:

a)
$$2^{x+1} = 8$$


b)
$$4^x = 24$$

c)
$$2^{x+2} = 3^{x-1}$$

a)
$$2^{x+1} = 8$$
 b) $4^x = 24$ c) $2^{x+2} = 3^{x-1}$ d) $7^{2x} + 7^x - 6 = 0$

Aufgabe C19

Das Einspannmoment $M = F \cdot l$ dieses Systems bleibt unverändert, wenn die Kraft F um 240N vergrößert und der Hebelarm l um 10cm verkürzt wird, bzw. wenn die Kraft F um 240N verkleinert und der Hebelarm l um 20cm verlängert wird.

Wie groß ist das Einspannmoment M?

Aufgabe C20

Aus einem rechteckigen Stück Blech mit den Seitenmaßen a = 80cm und b = 120cmsoll eine rechteckige Öffnung vom Flächeninhalt $A_0 = 4784cm^2$ so herausgeschnitten werden, dass ein Rand von überall gleicher Breite d stehen bleibt.

Wie breit ist der Rand?

Aufgabe C21

Die Resultierende zweier rechtwinklig zueinander stehender Kräfte F_I und F_{II} beträgt 170N. Vergrößert man die eine Kraft um 10N und die andere um 40N, so wächst die Resultierende um 30N.

Wie groß sind die Kräfte F_I und F_{II} ?

Bestimmen Sie die freien Parameter a_0 und a_1 so, dass die Kurven folgender Funktionen durch die angegebenen Punkte gehen:

a)
$$y = a_1 \cdot e^{a_0 \cdot x}$$

$$P(2|1)$$
, $Q(-2|0,6)$

b)
$$y = a_1 \cdot \ln(a_0 \cdot x)$$
 $P(1|2)$, $Q(2|8)$

$$P(1|2)$$
, $Q(2|8)$

c)
$$y = a_0 \cdot x^{\frac{1}{3}} + a_1 \cdot x^{\frac{1}{2}}$$
 $P(1|1)$, $Q(2|2)$

$$P(1|1)$$
, $Q(2|2)$

d)
$$y = \frac{a_1}{1 + a_0 \cdot x}$$
 $P(1|4)$, $Q(10|1)$

$$P(1|4)$$
 , $Q(10|1)$

Aufgabe C23

Der Wechselstromwiderstand Z bei Parallelschaltung eines Ohmschen Widerstands R, eines Kondensators C, und einer Induktivität L (Spule) genügt der Gleichung:

$$Z = \frac{1}{\sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}}$$

Dabei sind $\omega = 2 \cdot \pi \cdot f$ die Kreisfrequenz und f die Frequenz des Wechselstroms.

- a) Zeigen Sie, dass für alle Werte R, C, L die Aussage $Z \le R$ gilt.
- b) Unter welchen Bedingungen gilt Z = R?.
- c) Wie ändert sich Z für $\omega \to 0$ und für $\omega \to \infty$?
- d) Berechnen Sie zu $R = 1k\Omega = 1000 \frac{V}{4}$; $C = 10\mu F = 10^{-5} \frac{A \cdot s}{V}$

und $L = 10 \mu H = 10^{-5} \frac{V \cdot s}{A}$ die Kreisfrequenz ω , für die $Z = 0.5 \cdot R$ gilt.

Zusammenhang zwischen Schallgeschwindigkeit und Lufttemperatur:

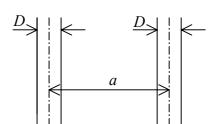
- a) Berechnen Sie aus einer gemessenen Schallgeschwindigkeit $c=(336\pm0.1)\frac{m}{s}$ die Lufttemperatur T in $^{\circ}C$ nach der Formel $c=331,6\frac{m}{s}\cdot\sqrt{1+\frac{T}{273,15^{\circ}C}}$
- b) Rechtfertigen Sie die Verwendung der Näherungsformel $c \approx \& = \left(331,6 + \frac{3T}{5^{\circ}C}\right) \frac{m}{s}$ für Temperaturen im Bereich $\pm 10^{\circ}C$.

Hinweis: $c^2 - \&^2 = (c - \&) \cdot (c + \&)$

Aufgabe C25

 $1 m^3$ Luft wiegt bei $0^{\circ}C$ und einem Luftdruck $p_0 = 10,33 \frac{N}{cm^2}$ etwa 12,93N.

Bestimmen Sie aus der Luftdichte $ho_{\scriptscriptstyle 0}$ und der barometrischen Höhenformel


 $p=p_0\cdot e^{-\frac{\rho_0\cdot g\cdot h}{p_0}}$ die Höhen h_1 und h_2 , in denen der Luftdruck $p_1=\frac{p_0}{2}$ bzw. $p_2=\frac{p_0}{10}$ herrscht.

Hinweis: $g = 9.81 \frac{m}{s^2}$ ist die Erdbeschleunigung.

Aufgabe C26

Zwei im Abstand a parallel verlaufende elektrische Leitungen der Länge l mit Durchmessern D stellen eine Leitungskapazität C dar:

$$C = \frac{\pi \cdot \varepsilon \cdot l}{\ln\left(\frac{a + \sqrt{a^2 - D^2}}{D}\right)}; \qquad \varepsilon = 8,86 \cdot 10^{-12} \frac{F}{m}$$

- a) Berechnen Sie die Kapazität C für die Werte l = 0.16m, D = 0.2mm und a = 0.4mm
- b) Wie muss sich *D* in Abhängigkeit von *a* ändern, wenn die Leitungskapazität bei Annäherung der Leitungen konstant bleiben soll?

Abschnitt D: Geometrie

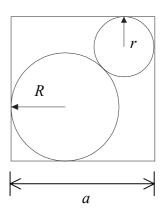
Aufgabe D1

Wie groß sind die Höhe und der Flächeninhalt eines gleichseitigen Dreiecks mit der Seitenlänge a?

Aufgabe D2

In welchem Verhältnis steht der Flächeninhalt eines Kreises durch die Eckpunkte eines Quadrats zu der Fläche des Quadrats?

Aufgabe D3


In einem gleichschenkligen Dreieck ist jeder Schenkel um 30 % länger als die Grundlinie a. Der Flächeninhalt des Dreiecks beträgt $A = 60cm^2$.

Wie lang ist die Grundlinie a?

Aufgabe D4

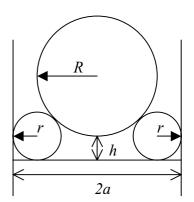
Aus einem quadratischen Blech mit der Seitenlänge a sind nach nebenstehender Figur zwei Kreise zu schneiden, deren Radien r und R sich wie 1:3 verhalten.

Wie groß sind die Radien der Kreise?

Aufgabe D5

Drei gleich große Kreise vom Radius r berühren sich. Berechnen Sie den Radius R des kleinsten Kreises, der die drei Kreise einschließt.

Aufgabe D6


Ein rechtwinkliges Dreieck ABC, dessen Katheten $\overline{BC} = a$ und $\overline{AC} = b$ (b > a)

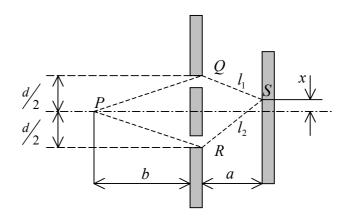
bekannt sind, soll durch eine Senkrechte $\overline{DE} = d$ auf der Hypotenuse \overline{AB} in zwei Teile gleichen Flächeninhalts zerlegt werden.

Bestimmen Sie die Länge der Strecke d.

Auf einem ebenen Boden liegen an zwei Wänden (Wandabstand = 2a) zwei gleiche Walzen mit Radius r. Auf ihnen liegt eine dritte Walze mit Radius R.

- a) Welchen Abstand h hat die dritte Walze vom Boden?
- b) Bei welchem Wert von R ist dieser Abstand gleich r? Wie lauten die Ergebnisse für die Aufgabenteile a) und b) für den Fall, dass a = R ist?

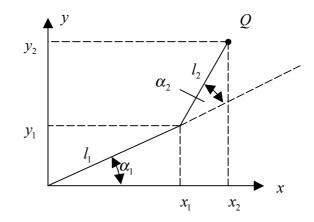
Aufgabe D8


Zwei Lichtstrahlen gelangen von P durch Blenden bei Q und R nach S.

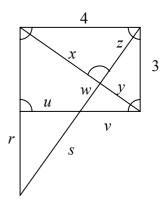
Berechnen Sie die Differenz Δl der zurückgelegten Wege in Abhängigkeit von x, a und d.

Vereinfachen Sie die Formel mit der Näherung

$$l_2^2 - l_1^2 \approx 2a \cdot (l_2 - l_1)$$
,

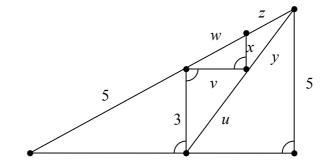

wenn a >> d und a >> x ist.

Aufgabe D9

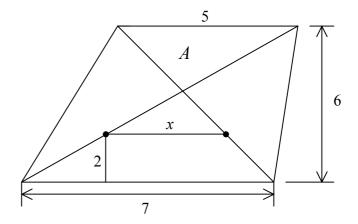

Die Koordinaten des Punktes Q werden erfasst durch Messung von $\alpha_{\rm l}$ und $\alpha_{\rm l}$ bei fest vorgegebenen Längen $l_{\rm l}$ und $l_{\rm l}$.

Stellen Sie allgemeingültige Beziehungen für x_2 und y_2 in Abhängigkeit von α_1 , α_2 , l_1 , l_2 auf und berechnen Sie die Koordinaten $Q(x_2|y_2)$ für die Werte $l_1=l_2=1000mm$, $\alpha_1=20^\circ$, $\alpha_2=30^\circ$.

Berechnen Sie mit Hilfe von Strahlensätzen und des Satzes von Pythagoras die in der Skizze bezeichneten Größen

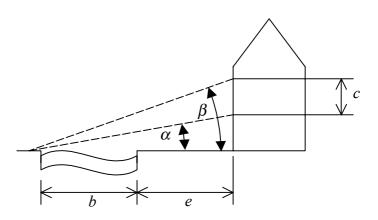

$$r$$
, s , u , v , w , x , y , z .

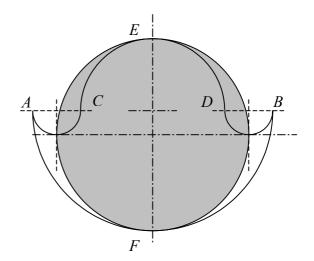
Aufgabe D11


Berechnen Sie die in der Skizze bezeichneten Größen

$$u$$
, v , w , x , y , z .

Aufgabe D12

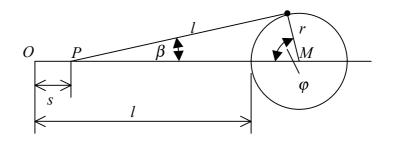

Berechnen Sie für das dargestellte Trapez die eingetragene Länge x und den Teilflächeninhalt A (oberes Dreieck).


Aufgabe D13

Die vordere Wand eines Hauses steht in der Entfernung e von einem Flussufer. Visiert man vom anderen Flussufer zwei im Abstand c senkrecht übereinander liegende Punkte der Hauswand an, so erhält man die Neigungswinkel α und β . Berechnen Sie die Flussbreite b

- a) allgemein und
- b) für die Werte e = 12m, c = 8m, $\alpha = 15^{\circ}$ und $\beta = 25^{\circ}$.

Prüfen Sie, ob die Fläche, die von den über $d = \overline{AB}$, $d_1 = \overline{AC} = \overline{DB}$ und $d_2 = \overline{CD}$ geschlagenen Halbkreisen begrenzt wird, den gleichen Inhalt hat, wie der Kreis mit dem Durchmesser \overline{EF} (graue Fläche).


Aufgabe D15

Wird die lange Seite eines Rechtecks um 4 cm verkürzt und die kurze Seite um 6 cm verlängert, so entsteht ein Quadrat mit gleich langer Diagonale wie die des Rechtecks.

Wie lang sind die Seiten des Rechtecks?

Aufgabe D16

Beschreiben Sie für einen Kurbeltrieb den Weg s in Abhängigkeit vom Kurbelwinkel φ und den Größen r und l.

Aufgabe D17

- a) Bestimmen Sie die Winkel α , β , γ in einem Dreieck mit den Seiten a=3, b=5 und c=6.
- b) Bestimmen Sie die Höhe h_c auf der Seite c und den Flächeninhalt des Dreiecks.

Aufgabe D18

- a) Bestimmen Sie die Seite c und die Winkel α und β in einem Dreieck mit den Seiten a=3, b=6 und dem Winkel $\gamma=60^{\circ}$.
- b) Bestimmen Sie außerdem die Seitenhalbierende s_c auf der Seite c.

- a) Bestimmen Sie die fehlenden Seiten in dem Dreieck mit den gegebenen Größen c = 10, $\alpha = 30^{\circ}$ und $\beta = 50^{\circ}$.
- b) Bestimmen Sie die Winkelhalbierende w_b des Winkels β auf der Seite b.

Aufgabe D20

Gegeben ist ein allgemeines Dreieck mit der Seite a = 3 und dem Winkel $\beta = 30^{\circ}$.

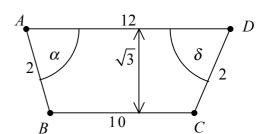
- a) Bestimmen Sie die Seite c in dem Dreieck für b=4.
- b) Für welche Werte der Seite b hat die Aufgabe keine Lösung?
- c) Für welche Werte der Seite b hat die Aufgabe zwei Lösungen Lösung?

Aufgabe D21

Bestimmen Sie in einem Dreieck mit den Winkeln $\alpha=30^\circ$, $\beta=50^\circ$, $\gamma=100^\circ$ und dem Flächeninhalt $A_0=1$ die Seite c.

Aufgabe D22

Von einem Dreieck sind a=4, $s_a=4$ und $\alpha=30^\circ$ bekannt. Bestimmen Sie die Länge der Seite c.


Aufgabe D23

Bestimmen Sie die Länge der Seite a des Dreiecks aus der Länge der Winkelhalbierenden $w_a=4$ und den Winkeln $\beta=60^\circ$ und $\gamma=80^\circ$.

Aufgabe D24

Im Gelenktrapez ABCD mit $\alpha = \delta = 60^{\circ}$ sind A und D festzuhalten und B so um A zu drehen, dass α um 10° kleiner wird.

Wie groß ist danach δ ?

Lösungen zu den Übungsaufgaben

A1: a)
$$z = \frac{7}{24}$$

b)
$$z = 750$$
 c) $z = 984$ d) $z = \frac{13}{20}$

c)
$$z = 984$$

d)
$$z = \frac{13}{20}$$

A2: a)
$$z = \frac{1}{216}$$
 b) $z = \frac{1}{9}$

b)
$$z = \frac{1}{9}$$

A3: a)
$$z = 3$$
 b) $z = \frac{2a}{a - b}$ c) $z = 2$

b)
$$z = \frac{2a}{a - b}$$

c)
$$z = 2$$

A4:
$$p = a^{\frac{1}{n}} \cdot b^{1-m}$$
; $q = \sqrt{3} - \sqrt{2}$

A5: a)
$$p = \sqrt{3}$$
 b) $q = x \cdot (x+2)$ c) $r = 35ab$

b)
$$q = x \cdot (x+2)$$

c)
$$r = 35ab$$

A6: a)
$$p = \ln(6)$$
 b) $q = 2 \cdot \sqrt{\ln(ab)}$ c) $r = \sqrt{2}$

b)
$$q = 2 \cdot \sqrt{\ln(ab)}$$

c)
$$r = \sqrt{2}$$

A7: a)
$$p = 4$$

A7: a)
$$p = 4$$
 b) $q = \frac{1}{2} (e^{y-x} - e^{x-y})$ c) $r = e^{3ax} \cdot (1 - e^{2ax})$

c)
$$r = e^{3ax} \cdot \left(1 - e^{2ax}\right)$$

A8: a)
$$\left(x - \frac{1}{y}\right) \cdot \left(a + \frac{1}{b}\right)$$

A8: a)
$$\left(x - \frac{1}{y}\right) \cdot \left(a + \frac{1}{b}\right)$$
 b) $\left(c^2 + \frac{1}{d^2}\right) \cdot \left(c - \frac{1}{d}\right) \cdot \left(c + \frac{1}{d}\right)$

c)
$$8cd(c^2+d^2)$$

d)
$$(c+10)\cdot(c-2)$$

A9: a)
$$(a-1) \cdot (a^2 + a + 1)^2$$

A9: a)
$$(a-1)\cdot(a^2+a+1)^2$$
 b) $(a-1)\cdot(a^2+a+1)\cdot(a^2+a-1)$

A10: a)
$$p = -ax^2 \cdot \left(x - \frac{3}{2} - \frac{\sqrt{13}}{2}\right) \cdot \left(x - \frac{3}{2} + \frac{\sqrt{13}}{2}\right)$$
 b) $q = \frac{\left(b - \frac{3}{b}\right) \cdot \left(b + \frac{1}{b}\right)}{5b + 4}$

b)
$$q = \frac{\left(b - \frac{3}{b}\right) \cdot \left(b + \frac{1}{b}\right)}{5b + 4}$$

c)
$$r = \frac{-2 \cdot (3 + 2 \cdot \sqrt{21}) + \left(2s + \frac{\sqrt{21}}{s}\right)^2}{3 \cdot \left(10 + \frac{1}{s}\right)^2}$$

A11: a)
$$3-2\cdot\sqrt{2}$$

A11: a)
$$3-2\cdot\sqrt{2}$$
 b) $3-2\cdot\sqrt{2}$ c) $2\cdot\sqrt{2}$ d) 7 e) $5\cdot\sqrt{2}+7$ f) $99+70\cdot\sqrt{2}$

d) 7 e)
$$5 \cdot \sqrt{2}$$

f)
$$99 + 70 \cdot \sqrt{2}$$

A12: Beweise zu a-c) durch Umformung der Gleichungen

A13: a)
$$x^3 - x^2 + x - 1$$
 b) $x + 1 + \frac{1}{x^2}$

b)
$$x+1+\frac{1}{x}$$

A14: a)
$$(1-x^2)^3$$

b)
$$\frac{2 \cdot (2-x)}{x^2}$$

A15: a)
$$n = 24p + 14$$
, p ganzzahlig b) $p = 3i - 2$, $n = 16i + 1$, i ganzzahlig c) $n = 4p + 7 + \frac{2}{3}$, keine Lösungen

A16:
$$y = \frac{2e^x}{e^{2x} - 1}$$

A17:
$$A = 0$$

A18:
$$\lg(4) = 2 \cdot \lg(2)$$
; $\lg(5) = 1 - \lg(2)$; $\lg(6) = \lg(2) + \lg(3)$

A19: a)
$$a = \frac{b \cdot (c+2)}{c}$$
; $b = \frac{a \cdot c}{c+2}$; $c = \frac{2b}{a-b}$

b)
$$a = 2 \cdot \sqrt{c \cdot \left(\frac{2c}{b} - 1\right)}; \quad b = \frac{8c^2}{a^2 + 4c}; \quad c_{1,2} = \frac{b}{4} \cdot \left(1 \pm \sqrt{1 + \frac{2a^2}{b}}\right)$$

A20: a)
$$x = a \cdot \frac{y+1}{y-1}$$
 b) $x = \left(\frac{y-1}{y+1}\right)^2$ c) $x = a \cdot \left(\frac{1-y}{1+y}\right)^2$

B1:
$$S(12,343|8,1713)$$

B2:
$$A = \frac{4}{3}$$

B3:
$$n = 58$$

B4:
$$S(6,963|-15,615)$$

B5:
$$b_1 = 2923,80m$$
; $b_2 = 2788,73m$; $v = 143,98\frac{m}{s}$

B6: a)
$$y = x - 1$$
 b) $y = x - 1$

B7:
$$x_1 = -2$$
; $x_2 = \frac{3}{2}$; $S\left(-\frac{1}{4} - \frac{49}{2}\right)$

$$\underline{\mathsf{B8:}} \qquad m = \frac{1}{\sqrt{15}}$$

B9: a)
$$x_1 = -0.1327$$
, $x_2 = -2.673$

b)
$$x_1 = 0.6189$$
, $x_2 = 0.0027$

c)
$$c = 17$$
; $x_0 = -1$

C1: a)
$$x = -\frac{11}{9}$$
 b) $x = \frac{b + ca^2}{m - na^2}$ c) keine Lösung $x \in \Re$ d) $x = 10$

C2: a)
$$x = -\frac{37}{23}$$
 b) $x = 1$

C3:
$$x = a^2 - b^2$$
; $y = a^2 - b^2$

C4: a)
$$x = \frac{1}{3}$$
; $y = \frac{1}{2}$ b) $x = \frac{1}{4}$; $y = \frac{1}{3}$

C5: a)
$$x = 25$$
 b) $x = -\frac{b}{a+b}$

C6:
$$x = \frac{24}{13}$$

C7: a)
$$x = 4.5 \pm 20.5$$
 b) $x = \pm \sqrt{3}$ c) $x = \frac{5a}{3}$

C8: a)
$$x = 30$$
 b) $x = 10$ c) $x = -\frac{16a^3b^3}{(a+b)^2} - \frac{(a+b)^2}{4ab}$ d) $x = \frac{ab}{a+b}$

e)
$$x = 7$$
 f) $x = 15$ g) $x = 5$

$$\underline{\text{C9:}} \qquad x = \frac{1}{4} \left(\frac{1}{d} - a^2 \right)$$

C10: a)
$$x_1 = -4$$
; $x_2 = 0$ b) $x_2 = 3$ c) keine Lösung

C11: a)
$$y = \left(-\frac{1}{2} \pm \sqrt{x^{\frac{1}{2}} - \frac{3}{4}}\right)^2$$
 b) $y = \left(\frac{1}{4x^{\frac{1}{2}}} \pm \sqrt{\frac{1}{16x} - \frac{1 - x^{\frac{1}{4}}}{2x^{\frac{1}{2}}}}\right)^4$

c)
$$y = \left(\frac{1}{2}x^{-\frac{1}{2}} \pm \sqrt{\frac{1}{4}x^{-1} - x^{-\frac{1}{16}}}\right)^{\frac{3}{2}}$$

C12: a)
$$x = 8$$
 b) $x = \frac{1}{3}$ c) $x = 2$ d) $x = 2$ e) $x = 1$ f) $x = 1$

C13: a)
$$x = 3$$
 b) $x = 2$ ($x = -2$ entfällt, da lg -Terme hierfür nicht definiert)

C14: a)
$$x_1 = 4$$
 b) $x_1 = 1$; $x_2 = 10$

C15:
$$x_1 = \frac{1}{3}$$
; $x_2 = 9$

C16:
$$x = 16$$
; $y = \frac{1}{64}$

b) x = 2,2925 c) x = 6,1285 d) x = 0,3562

C17: a)
$$x = 0.31607$$
 b) $x = -0.17329$ c) $x = \frac{1}{2a} \cdot \ln\left(\frac{1+a}{1-a}\right)$; $-1 < a < 1$

C19:
$$M = 288Nm$$

C18: a) x = 2

$$\underline{C20:} \qquad d = 14cm$$

C21:
$$F_I = 150N$$
; $F_{II} = 80N$

C22: a)
$$a_0 = \frac{1}{4} \cdot \ln\left(\frac{5}{3}\right)$$
; $a_1 = \sqrt{\frac{3}{5}}$ b) $a_0 = 2^{\frac{1}{3}}$; $a_1 = \frac{6}{\ln(2)}$

c)
$$a_1 = \frac{2^{\frac{2}{3}} - 1}{2^{\frac{1}{6}} - 1}$$
; $a_0 = \frac{2^{\frac{1}{6}} - 2^{\frac{2}{3}}}{2^{\frac{1}{6}} - 1}$ d) $a_0 = \frac{1}{2}$; $a_1 = 6$

C23: a)
$$Z = a \cdot R$$
; $a \le 1$ b) $Z \to 0$ c) $\omega = w \cdot 10^5 s^{-1}$ mit $w = \frac{\sqrt{3}}{2} \cdot 10^{-3} \pm \sqrt{1 + \frac{3}{4} \cdot 10^{-6}}$

C24: a)
$$T = 7.3^{\circ}C \pm 0.2^{\circ}C$$
 b) $|c - \mathcal{E}| \le 0.8 \frac{m}{s}$

C25:
$$h_1 = 5537, 6m$$
; $h_2 = 18396m$

C26: a) 3,38*pF* b)
$$D = 0.5a$$
 bzw. $D = \frac{2K}{K^2 + 1} \cdot a$ mit $K = e^{\frac{\pi \varepsilon l}{C}}$

$$\underline{D1:} \qquad h_a = \frac{\sqrt{3}}{2} a; \quad A = \frac{\sqrt{3}}{4} a^2$$

$$\underline{\mathsf{D2:}} \qquad \frac{A_{um}}{A_{in}} = 2$$

D3:
$$h = 1, 2a$$
; $a = 10cm$

D4:
$$r = 0.1464a$$
; $R = 0.4393a$

D5:
$$R = 2,1547r$$

$$\underline{\mathsf{D6:}} \qquad d = \frac{1}{2}\sqrt{2 \cdot a}$$

$$\underline{\mathsf{D7:}} \qquad h = r - R + \sqrt{(R+a) \cdot (R-a+2r)} \qquad \mathsf{b)} \ \ R = a \left(\frac{a}{2r} - 1\right) \qquad \mathsf{c)} \ \ R = 4r$$

$$\underline{\mathsf{D8:}} \qquad \Delta l = \sqrt{a^2 + \left(x + \frac{d}{2}\right)^2} - \sqrt{a^2 + \left(x - \frac{d}{2}\right)^2} \; ; \quad \Delta l \approx \frac{d \cdot x}{a}$$

$$\underline{\text{D9:}} \quad x_2 = l_1 \cdot \cos(\alpha_1) + l_2 \cdot \cos(\alpha_1 + \alpha_2); \quad y_2 = l_1 \cdot \sin(\alpha_1) + l_2 \cdot \sin(\alpha_1 + \alpha_2); \\ Q(1582, 48mm | 1108, 06mm)$$

D10:
$$x = 3,2$$
; $y = 1,8$; $z = 2,4$; $v = 2,25$; $u = 1,75$; $w = 1,35$; $s = 2,91667$; $r = 2,33333$

D11:
$$x = 1,2$$
; $v = 1,6$; $w = 2$; $u = 3,4$; $v = 2,26667$; $z = 1,33333$

D12:
$$x = 3$$
; $A = 6,25$

D13:
$$b = c \cdot \frac{\cos \alpha \cdot \cos \beta}{\sin (\beta - \alpha)} - e$$
; $b = 28,33m$

D14: Flächen sind gleich

D15:
$$b = 7cm$$
; $a = 17cm$

$$\underline{\mathsf{D16:}} \quad s = r \cdot (1 - \cos \varphi) + l \cdot \left(1 - \sqrt{1 - \frac{r^2}{l^2} \sin^2 \varphi}\right)$$

D17:
$$\alpha = 29.93^{\circ}$$
; $\beta = 56.25^{\circ}$; $\gamma = 93.82^{\circ}$; $h_c = 2.494$; $A_0 = 7.483$

D18:
$$c = 5,196$$
; $\alpha = 30^{\circ}$; $\beta = 90^{\circ}$; $s_c = 3,969$

D19:
$$a = 5,077$$
; $b = 7,779$; $w_b = 6,104$

D20: a)
$$c = 6,306$$

- b) keine Lösung für b < 1,5
- c) zwei Lösungen für 1,5 < b < 3

$$\underline{\mathsf{D21:}} \quad c^2 = 2A \cdot (\cot \alpha + \cot \beta); \quad c = 2,268$$

$$\underline{\text{D22:}} \quad c^4 - \left(\frac{a^2}{2} + 2s_a^2\right) \cdot c^2 + \frac{\left(s_a^2 - \frac{a^2}{4}\right)^2}{\cos^2 \alpha} = 0; \quad c_1 = 5,867; \quad c_2 = 2,362$$

D23:
$$a = 2,9689$$

D24:
$$\delta' = 68.9^{\circ}$$