Modulhandbuch

B.Sc. Verfahrenstechnik

(Prüfungsordnung für Studienanfänger im 1. Semester ab WS 2021/22)

Fakultät Life Sciences
Department Verfahrenstechnik

21. Januar 2021
Inhalt

Ziele des Bachelorstudiengangs Verfahrenstechnik .. 5
Praxisbezug .. 7
Forschung ... 7
Die Bachelorarbeit .. 7
Übersicht über die Module / Modulnummern: ... 8
Prüfungsformen ... 11
Modulbeschreibungen ... 14
Modul: Mathematik A ... 14
Modul: Mathematik B ... 16
Modul: Informatik .. 19
Modul: Physik A ... 22
Modul: Physik B ... 25
Modul: Technische Mechanik 1 ... 28
Modul: Technische Mechanik 2 ... 30
Modul: Thermodynamik ... 32
Modul: Chemie 1 .. 34
Modul: Chemie 2 .. 36
Modul: Werkstofftechnik ... 39
Modul: Elektrotechnik ... 41
Modul: Strömungsmechanik ... 43
Modul: Wärme- und Stoffübertragung .. 46
Modul: Betriebswirtschaftliche Grundlagen .. 48
Modul: Konstruktion, Anlagentechnik ... 51
Modul: Praktikum Konstruktion / Anlagenplanung ... 54
Modul: Apparate und Maschinen .. 56
Modul: Mess- und Regelungstechnik ... 59
Modul: Mechanische Verfahrenstechnik ... 62
Modul: Thermische Verfahrenstechnik 1 .. 64
Modul: Thermische Verfahrenstechnik 2 .. 67
Modul: Verfahrenstechnisches Praktikum ... 70
Modul: Chemische Verfahrenstechnik 1 .. 73
Modul: Chemische Verfahrenstechnik 2 .. 75
Modul: Allgemeines Ingenieurwissen 1 .. 77
Modul: Allgemeinwissenschaftliches Wahlpflichtmodul ... 79
Modul: Praxissemester .. 80
Modul: Bachelorarbeit .. 82
Modul: Prozessautomatisierung und Prozessleittechnik ... 84
Modul: Projektierung verfahrenstechnischer Anlagen ... 86
Modul: Angewandte numerische Simulation ... 88
Modul: Simulation verfahrenstechnischer Prozesse .. 91
Modul: Lebensmittelwarenkunde und -verfahrenstechnik .. 93
Ziele des Bachelorstudiengangs Verfahrenstechnik

Das übergeordnete Ziel des siebensemestrigen Studiengangs Verfahrenstechnik ist es, den Studierenden zu einem frühen Einstieg in das Berufsfeld der Verfahrenstechnik oder zu einem wissenschaftlich vertiefenden Studium in den verfahrenstechnisch verwandten Ingenieurwissenschaften zu befähigen.

Im Rahmen des Studiums ist die Wahl eines Studienschwerpunktes vorgesehen, der den Studierenden eine Möglichkeit zur Profilierung in verfahrenstechnisch typischen Arbeitsfeldern gibt.

Diese Arbeitsfelder sind im Einzelnen

1. Verfahrenstechnischer Anlagenbau
2. Numerische Simulation und Prozessleittechnik
3. Lebensmittelverfahrenstechnik

Durch die Wahl dieser Arbeitsfelder werden die Studierenden befähigt, ein Verständnis für die spezifische Arbeitsweisen und Aufgabenstellungen aus diesen Bereichen zu entwickeln.

Die Hochschule für Angewandte Wissenschaften ist als typische Regionalhochschule stark mit dem Hamburger Umfeld verbunden. Dies äußert sich zum Einen darin, dass die Studierenden der Fachrichtung Verfahrenstechnik in der Region Hamburg verankert sind (und dies auch häufig nach Beendigung ihres Studiums bleiben möchten) und zum Anderen die Hochschule traditionell einen engen Kontakt zu den in der Region beheimateten Unternehmen pflegt. Ca. 35 % der Studierenden haben eine erste Fachausbildung in den Unternehmen der Region absolviert.
Das verfahrenstechnische Umfeld der Region Hamburg ist geprägt durch einige große Arbeitgeber im Bereich der Health-Care, der Raffinerie- und der Lebensmittelindustrie (Produktion und Entwicklung) und durch eine Vielzahl mittelständischer Unternehmen des verfahrenstechnischen Anlagen- und Apparatebaus (mechanische Förder- und Schüttguttechnik, Anlagenbau für die Lebensmittel- und die Energietechnik, …).

Weiterhin werden die Studierenden durch Ihr breites und umfangreiches Wissen im Bereich der ingenieurtechnischen, mathematischen und naturwissenschaftlichen Grundlagen, dem Wissen über technisch-wissenschaftliche Grundlagen und Methoden und durch Ihre Kompetenz zur fachübergreifenden Zusammenarbeit befähigt, ein wissenschaftlich vertiefendes Studium in den verfahrenstechnischen Ingenieurwissenschaften aufzunehmen.
Praxisbezug

Exkursionen zu verschiedenen Unternehmen, die Verfahrenstechniker als Fachkräfte anstellen, runden den Praxisbezug ab.

Forschung

Die Bachelorarbeit

Die Bachelorarbeit ist eine theoretische, empirische oder experimentelle Untersuchung mit schriftlicher Ausarbeitung. In der Bachelorarbeit sollen die Studierenden zeigen, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein Problem aus ihrer gewählten Studienvertiefung selbstständig unter Anwendung wissenschaftlicher Methoden und Erkenntnisse zu bearbeiten.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modul</th>
<th>Sem.</th>
<th>CP</th>
<th>Lehrveranstaltung</th>
<th>Voraussetzung bestande-</th>
<th>Empfehlung Kenntnisse</th>
<th>LVA</th>
<th>GrG</th>
<th>SWS</th>
<th>PA</th>
<th>PF</th>
<th>Abschlussnoten-anteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mathematik A</td>
<td>1</td>
<td>7</td>
<td>Mathematik 1</td>
<td>SeU</td>
<td>40</td>
<td>6</td>
<td>PL</td>
<td>K, M</td>
<td></td>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>2</td>
<td>Mathematik B</td>
<td>2,3</td>
<td>7</td>
<td>Mathematik 2</td>
<td>1 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>K, M</td>
<td></td>
<td></td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mathematik 3</td>
<td>1 SeU</td>
<td>40</td>
<td>2</td>
<td>PL</td>
<td>K, M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Informatik</td>
<td>1, 2</td>
<td>6</td>
<td>Informatik 1 Praktikum</td>
<td>Prakt 13,3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Informatik 2</td>
<td>1 SeU</td>
<td>40</td>
<td>2</td>
<td>PL</td>
<td>K, M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Informatik 2 Praktikum</td>
<td>Prakt 13,3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Physik A</td>
<td>1</td>
<td>5</td>
<td>Physik 1</td>
<td>SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>K, PF</td>
<td></td>
<td></td>
<td>2,4</td>
</tr>
<tr>
<td>5</td>
<td>Physik B</td>
<td>2,3</td>
<td>5</td>
<td>Physik 2</td>
<td>4 SeU</td>
<td>40</td>
<td>2</td>
<td>PL</td>
<td>K, PF</td>
<td></td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physik Praktikum</td>
<td>Prakt 13,3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Technische Mechanik 1</td>
<td>1</td>
<td>5</td>
<td>Technische Mechanik 1</td>
<td>SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>K, M</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Technische Mechanik 2</td>
<td>2</td>
<td>5</td>
<td>Technische Mechanik 2</td>
<td>SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>K, M, PF</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Thermodynamik</td>
<td>2</td>
<td>5</td>
<td>Thermodynamik</td>
<td>SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>K, M</td>
<td></td>
<td></td>
<td>2,4</td>
</tr>
<tr>
<td>9</td>
<td>Chemie 1</td>
<td>1</td>
<td>5</td>
<td>Chemie 1</td>
<td>SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>H, K, M</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Chemie 2</td>
<td>2</td>
<td>5</td>
<td>Chemie 2</td>
<td>9 SeU</td>
<td>40</td>
<td>2</td>
<td>SL</td>
<td>H, K, M</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chemie Praktikum</td>
<td>Prakt 13,3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Werkstofftechnik</td>
<td>1</td>
<td>5</td>
<td>Werkstofftechnik</td>
<td>SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>H, K oder M</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Elektrotechnik</td>
<td>2</td>
<td>5</td>
<td>Elektrotechnik</td>
<td>1,4 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>K, M</td>
<td></td>
<td></td>
<td>2,4</td>
</tr>
<tr>
<td>13</td>
<td>Strömungsmechanik</td>
<td>3</td>
<td>5</td>
<td>Strömungsmechanik</td>
<td>2,4,5,7 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>PF, K, M</td>
<td>4,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Wärme- und Stoff-übertragung</td>
<td>3</td>
<td>5</td>
<td>Wärme- und Stoffübertragung</td>
<td>2,4,5 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>H, K, M</td>
<td>4,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Betriebwirtschaftliche Grundlagen</td>
<td>3</td>
<td>7</td>
<td>Recht</td>
<td>SeU</td>
<td>40</td>
<td>2</td>
<td>SL</td>
<td>H, K, M</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Betriebswirtschaftslehre</td>
<td>SeU</td>
<td>40</td>
<td>2</td>
<td>SL</td>
<td>H, K, M</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kostenrechnung</td>
<td>SeU</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Konstruktion, Anlagentechnik</td>
<td>3,4</td>
<td>8</td>
<td>Konstruktion</td>
<td>6, 11 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>H, K, R, PF, M</td>
<td>7,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Praktikum Konstruktion / Anlagenplanung</td>
<td>3,4</td>
<td>6</td>
<td>CAD Praktikum</td>
<td>Prakt 13,3</td>
<td>2</td>
<td>SL</td>
<td>KN, LA</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3D- Anlagenplanung (Praktikum)</td>
<td>Prakt 13,3</td>
<td>2</td>
<td>SL</td>
<td>KN, LA</td>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Apparate und Maschinen</td>
<td>4</td>
<td>7</td>
<td>Apparatebau</td>
<td>7,11 SeU</td>
<td>40</td>
<td>3</td>
<td>PL</td>
<td>H, K, M</td>
<td>6,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pumpen- und Verdichteranlagen</td>
<td>SeU</td>
<td>40</td>
<td>3</td>
<td>PL</td>
<td>H, K, M</td>
<td>6,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Mess- und Regelungstechnik</td>
<td>4,5</td>
<td>10</td>
<td>MSR- Technik</td>
<td>1,2 SeU</td>
<td>40</td>
<td>6</td>
<td>PL</td>
<td>H, K, M</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSR- Technik Praktikum</td>
<td>Prakt 13,3</td>
<td>2</td>
<td>SL</td>
<td>LA</td>
<td>H, K, M</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Mechanische Verfahrenstechnik</td>
<td>4,5</td>
<td>8</td>
<td>Mechanische Verfahrenstechnik</td>
<td>13,14 SeU</td>
<td>40</td>
<td>2</td>
<td>PL</td>
<td>H, K, M</td>
<td>6,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mechanische Verfahrenstechnik 1</td>
<td>SeU</td>
<td>40</td>
<td>2</td>
<td>PL</td>
<td>H, K, M</td>
<td>6,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Thermische Verfahrenstechnik 1</td>
<td>4</td>
<td>5</td>
<td>Thermische Verfahrenstechnik 1</td>
<td>13,14 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>H, K, M</td>
<td>4,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Thermische Verfahrenstechnik 2</td>
<td>5</td>
<td>5</td>
<td>Thermische Verfahrenstechnik 2</td>
<td>13,14 SeU</td>
<td>40</td>
<td>4</td>
<td>PL</td>
<td>H, K, M</td>
<td>4,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulhandbuch Verfahrenstechnik B.Sc.

1. Semester

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modul</th>
<th>Sem.</th>
<th>CP</th>
<th>Lehrveranstaltung</th>
<th>Abschlussnotenanteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Voraussetzung bestandene Module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Empfehlung Kenntnisse der Module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LVA</td>
<td>GrG</td>
</tr>
<tr>
<td>23</td>
<td>Verfahrenstechnisches Praktikum</td>
<td>4,5</td>
<td>5</td>
<td>Unit Operations Praktikum</td>
<td>20,21 Prak</td>
</tr>
<tr>
<td></td>
<td>Erarbeitung verfahrenstechn. Prozesse</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>Chemische Verfahrenstechnik 1</td>
<td>5</td>
<td>5</td>
<td>Chem. Verfahrenstechnik 1</td>
<td>.9,10</td>
</tr>
<tr>
<td>25</td>
<td>Chemische Verfahrenstechnik 2</td>
<td>7</td>
<td>5</td>
<td>Chem. Verfahrenstechnik 2</td>
<td>.9,10</td>
</tr>
<tr>
<td></td>
<td>Chem. Verfahrenstechnik Praktikum</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>Allgemeines Ingenieurwissen 1</td>
<td>5</td>
<td>5</td>
<td>Arbeits- und Unfallschutz</td>
<td>SeU</td>
</tr>
<tr>
<td></td>
<td>Verfahrenst. Projektmanagement</td>
<td></td>
<td></td>
<td></td>
<td>SeU</td>
</tr>
<tr>
<td>27</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul</td>
<td>5</td>
<td>4</td>
<td>Auswahl gem. Vorle-</td>
<td>SeU / S</td>
</tr>
<tr>
<td></td>
<td>sungsverzeichnis der Fakultät LS</td>
<td></td>
<td></td>
<td>SeU / S</td>
<td>16</td>
</tr>
<tr>
<td>28</td>
<td>Praxissemester</td>
<td>6</td>
<td>28</td>
<td>Praxissemester</td>
<td>Prak</td>
</tr>
<tr>
<td></td>
<td>Kolloquium Praxissemester</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>29</td>
<td>Bachelorarbeit</td>
<td>6, 7</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Summen: 210 Summe 100

Studienenschwerpunkt Verfahrenstechnischer Anlagenbau

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modul</th>
<th>Sem.</th>
<th>CP</th>
<th>Lehrveranstaltung</th>
<th>Abschlussnotenanteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Voraussetzung bestandene Module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Empfehlung Kenntnisse der Module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LVA</td>
<td>GrG</td>
</tr>
<tr>
<td>30</td>
<td>Prozessautomatisierung und Prozessleitechnik</td>
<td>7</td>
<td>5</td>
<td>Prozessautomatisierung und Prozessleitechnik</td>
<td>SeU</td>
</tr>
<tr>
<td>31</td>
<td>Projektierung verfahrenstechnischer Anlagen</td>
<td>7</td>
<td>10</td>
<td>Projektierung verfahrenstechnischer Anlagen</td>
<td>PS</td>
</tr>
</tbody>
</table>
Studienschwerpunkt numerische Simulation und Prozessleittechnik

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modul</th>
<th>Sem.</th>
<th>CP</th>
<th>Lehrveranstaltung</th>
<th>Voraussetzung bestandene Module</th>
<th>Empfehlung Kenntnisse der Module</th>
<th>LVA</th>
<th>SWS</th>
<th>PA</th>
<th>PF</th>
<th>Abschlussnotenanteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Prozessautomatisierung und Prozessleittechnik</td>
<td>7</td>
<td>5</td>
<td></td>
<td>Prozessautomatisierung und Prozessleittechnik</td>
<td></td>
<td>SeU</td>
<td>26,6</td>
<td>4</td>
<td>SL</td>
<td>K, M, PF, ÜT</td>
</tr>
<tr>
<td>32</td>
<td>Angewandte numerische Simulation</td>
<td>7</td>
<td>5</td>
<td></td>
<td>Angewandte numerische Simulation</td>
<td></td>
<td>PS</td>
<td>13,3</td>
<td>4</td>
<td>SL</td>
<td>K, M, PF, ÜT</td>
</tr>
<tr>
<td>33</td>
<td>Simulation verfahrenstechnischer Prozesse</td>
<td>7</td>
<td>5</td>
<td></td>
<td>Simulation verfahrenstechnischer Prozesse</td>
<td></td>
<td>PS</td>
<td>13,3</td>
<td>4</td>
<td>SL</td>
<td>K, M, ÜT</td>
</tr>
</tbody>
</table>

Studienschwerpunkt Lebensmitteltechnik

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modul</th>
<th>Sem.</th>
<th>CP</th>
<th>Lehrveranstaltung</th>
<th>Voraussetzung bestandene Module</th>
<th>Empfehlung Kenntnisse der Module</th>
<th>LVA</th>
<th>SWS</th>
<th>PA</th>
<th>PF</th>
<th>Abschlussnotenanteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Lebensmittelwaren-kunde und -verfahrenstechnik</td>
<td>7</td>
<td>5</td>
<td></td>
<td>Lebensmittelwaren-kunde und -verfahrenstechnik</td>
<td></td>
<td>SeU</td>
<td>13,3</td>
<td>2</td>
<td>SL</td>
<td>H, K, M,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lebensmittelwaren-kunde und -verfahrenstechnik, Praktikum</td>
<td></td>
<td>Prak</td>
<td>13,3</td>
<td>2</td>
<td>SL</td>
<td>LA</td>
</tr>
<tr>
<td>35</td>
<td>Lebensmittelchemie</td>
<td>7</td>
<td>5</td>
<td></td>
<td>Lebensmittelchemie</td>
<td></td>
<td>SeU</td>
<td>13,3</td>
<td>3</td>
<td>SL</td>
<td>H, K, M,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lebensmittelchemie, Praktikum</td>
<td></td>
<td>Prak</td>
<td>13,3</td>
<td>1</td>
<td>SL</td>
<td>LA</td>
</tr>
<tr>
<td>36</td>
<td>Qualitäts- und Risikomanagement</td>
<td>7</td>
<td>5</td>
<td></td>
<td>Qualitäts- und Risikomanagement</td>
<td></td>
<td>SeU</td>
<td>13,3</td>
<td>4</td>
<td>SL</td>
<td>H, K, M,</td>
</tr>
</tbody>
</table>

Prüfungsformen

Entsprechend § 14 APSO-INGI, jeweils in der geltenden Fassung, werden die Prüfungsformen für das anschließende Modulhandbuch wie folgt definiert:

1. Fallstudie (FS)

2. Hausarbeit (H)

3. Klausur (K)
Eine Klausur ist eine unter Aufsicht anzufertigende schriftliche Arbeit, in der die Studierenden ohne Hilfsmittel oder unter Benutzung der zugelassenen Hilfsmittel die gestellten Aufgaben allein und selbstständig bearbeiten. Die Dauer einer Klausur beträgt mindestens 60, höchstens 240 Minuten.

4. Kolloquium (KO)
Ist bei einzelnen Prüfungsarten, der Bachelor- oder Masterarbeit ein Kolloquium vorgesehen, so handelt es sich dabei um ein Prüfungsgespräch, in dem die Studierenden in freier Rede darlegen müssen, dass sie den Prüfungsstoff beherrschen. Das Kolloquium ist ein Prüfungsgespräch von mindestens 15 und höchstens 45 Minuten Dauer, welches auch dazu dient, festzustellen, ob es sich bei der zu erbringenden Leistung um eine selbstständig erbrachte Leistung handelt. Kolloquien können als Einzelprüfung oder als Gruppenprüfung durchgeführt werden. Bei Gruppenprüfungen ist die Gruppengröße bei der Festlegung der Prüfungsdauer angemessen zu berücksichtigen.

5. Konstruktionsarbeit (KN)
Eine Konstruktionsarbeit ist eine schriftliche Arbeit, durch die anhand fachpraktischer Aufgaben die konstruktiven Fähigkeiten unter Beweis zu stellen sind. Die Bearbeitungszeit beträgt höchstens drei Monate.
6. Laborabschluss (LA)

7. Laborprüfung (LR)

8. Mündliche Prüfung (M)

9. Projekt (Pj)

10. Referat (R)

vorgestellten Präsentationen bzw. Grafiken sind dem Prüfer in schriftlicher oder elektronischer Form zu übergeben. In der zusätzlichen schriftlichen Ausarbeitung, die dem Prüfer zu übergeben ist, sind die wichtigsten Ergebnisse zusammenzufassen.

11. Test (T)
Der Test ist eine schriftliche Arbeit, in dem die Studierenden nachweisen, dass sie Aufgaben zu einem klar umgrenzten Thema unter Klausurbedingungen bearbeiten können. Die Dauer eines Tests beträgt mindestens 15, höchstens 90 Minuten. In studiengangsspezifischen Prüfungs- und Studienordnungen kann bestimmt werden, dass die Einzelergebnisse der Tests mit in die Bewertung der Klausuren einbezogen werden.

12. Übungstestat (ÜT)

13. Portfolio Prüfung (PF)
Die Portfolio-Prüfung ist eine besondere Art der Prüfungsform. Sie besteht aus maximal drei Prüfungskomponenten, für die verschiedene Prüfungsformen zu verwenden sind, wie etwa eine Klausur, semesterbegleitende Übungsaufgaben oder eine mündliche Prüfung. Die möglichen Prüfungskomponenten ergeben sich aus den Prüfungsformen, die in der APSO-INGI in § 14 genannt werden, sowie semesterbegleitende Übungsaufgaben. Der Gesamtumfang der Portfolio-Prüfung nach Arbeitsaufwand und fachlichem Schwierigkeitsgrad darf den Umfang der sonstigen Prüfungsformen nicht überschreiten. Die einzelnen Prüfungskomponenten werden jeweils in Prozent gewichtet und führen gemeinsam zu einer Gesamtnote für die jeweilige Portfolio-Prüfung. Ist im Studienplan ein Fach oder Modul mit der Option „Portfolio-Prüfung“ gekennzeichnet, so legt die bzw. der die Lehrveranstaltung durchführende Lehrende zu Beginn der Lehrveranstaltung fest, ob und mit welchen Prüfungskomponenten mit welcher Gewichtung für die einzelnen Prüfungskomponenten die Portfolio-Prüfung für den folgenden Prüfungstermin stattfinden soll.
Bachelorstudiengang Verfahrenstechnik

Modul: Mathematik A

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr. Marion Siegers</td>
</tr>
<tr>
<td>Dauer des Moduls/ Semester/ Angebotsturnus</td>
<td>Ein Semester / 1. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (CP) / Semesterwochenstunden (SWS)</td>
<td>7 CP / 6 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>210 h, davon Präsenzstudium 108 h, Selbststudium 102 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>Empfohlene Vorkenntnisse</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Die Studierenden lösen</td>
</tr>
<tr>
<td></td>
<td>• Standardaufgaben aus der Vektorrechnung sowie aus der Differenzial- und Integralrechnung für reelle Funktionen mit einer Variablen, indem sie</td>
</tr>
<tr>
<td></td>
<td>• Rechenverfahren begründet auswählen und korrekt durchführen sowie die Bedeutung der Ergebnisse erläutern, damit sie</td>
</tr>
<tr>
<td></td>
<td>• die Lehrveranstaltungen ihres Studiengangs, in denen diese Kompetenzen genutzt werden, erfolgreich absolvieren können.</td>
</tr>
<tr>
<td>Inhalte des Moduls</td>
<td>Mathematisches Grundlagenwissen</td>
</tr>
<tr>
<td></td>
<td>• Elementare Konzepte der Mengentheorie</td>
</tr>
<tr>
<td></td>
<td>• Rechnen mit reellen Zahlen, Gleichungen und Ungleichungen</td>
</tr>
<tr>
<td></td>
<td>• Reelle elementare Funktionen einer Veränderlichen</td>
</tr>
<tr>
<td></td>
<td>Lineare Algebra</td>
</tr>
<tr>
<td></td>
<td>• Grundbegriffe der Vektoralgebra</td>
</tr>
<tr>
<td></td>
<td>• Vektorrechnung im 3-dimensionalen Raum mit Beispielen aus der Geometrie</td>
</tr>
<tr>
<td></td>
<td>Differenzial- und Integralrechnung für Funktionen einer reellen Veränderlichen</td>
</tr>
<tr>
<td>Modulhandbuch Verfahrenstechnik B.Sc.</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>Die in den Mathematik-Modulen erworbenen Fähigkeiten werden in unterschiedlichem Umfang in allen MINT-Modulen dieses Studiengangs genutzt. Sie sind ebenso in den MINT-Modulen der Bachelorstudiengänge • Hazard Control • Medizintechnik • Rescue Engineering • Umwelttechnik • Biotechnologie nutzbar.</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
<td></td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Mathematik 1</td>
<td></td>
</tr>
<tr>
<td>Lehr- und Lernformen/ Methoden / Medienformen</td>
<td></td>
</tr>
<tr>
<td>Seminaristischer Lehrvortrag, Übungen, Kleingruppenarbeit, Selbststudium</td>
<td></td>
</tr>
<tr>
<td>Begleitend werden ein Förderkurs oder ein Tutorium zur freiwilligen Teilnahme angeboten.</td>
<td></td>
</tr>
<tr>
<td>Literatur/ Arbeitsmaterialien</td>
<td></td>
</tr>
<tr>
<td>Lehrbücher (jeweils in der aktuellen Auflage)</td>
<td></td>
</tr>
<tr>
<td>Engeln-Müllges, G. (Hrsg.): Kompaktkurs Ingenieurmathematik. München: Carl Hanser Verlag</td>
<td></td>
</tr>
<tr>
<td>Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler 1, Wiesbaden: Springer Vieweg Verlag</td>
<td></td>
</tr>
<tr>
<td>Arbeitsbücher</td>
<td></td>
</tr>
<tr>
<td>Kusch, L.; Jung, H.; Rüdiger, K.: Cornelsen Lernhilfen Mathematik 1-4, Berlin: Cornelsen Verlag</td>
<td></td>
</tr>
<tr>
<td>Turtur, C.-W.: Prüfungstrainer Mathematik. Wiesbaden: Springer Spektrum Verlag</td>
<td></td>
</tr>
<tr>
<td>Formelsammlungen</td>
<td></td>
</tr>
<tr>
<td>Papula, L.: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Wiesbaden: Springer Vieweg Verlag</td>
<td></td>
</tr>
<tr>
<td>Stöcker, H.: Taschenbuch mathematischer Formeln und moderner Verfahren. Frankfurt am Main: Verlag Harri Deutsch</td>
<td></td>
</tr>
<tr>
<td>Merziger, G.; Mühlbach, G.; Wille, D.; Wirth, T.: Formeln und Hilfen zur Höheren Mathematik. binomiverlag.de</td>
<td></td>
</tr>
</tbody>
</table>
Bachelorstudiengang Verfahrenstechnik

Modul: Mathematik B

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr. Marion Siegers</td>
</tr>
<tr>
<td>Dauer des Moduls/ Semester / Angebotsturnus</td>
<td>Zwei Semester / 2. und 3. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (CP) / Semesterwochenstunden (SWS)</td>
<td>7 CP / 6 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>210 h, davon Präsenzstudium 108 h, Selbststudium 102 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>Empfohlene Vorkenntnisse Modul Mathematik A</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Die Studierenden lösen
- Standardaufgaben aus den Gebieten
 - Algebra der komplexen Zahlen
 - Fehlerrechnung,
 - Matrizenrechnung,
 - Differenzial- und Integralrechnung für reelle Funktionen mit mehreren Variablen,
 - Gewöhnliche Differentialgleichungen sowie
 - Potenz- und Fourier-Reihen,

indem sie
- Rechenverfahren begründet auswählen und korrekt durchführen sowie die Bedeutung der Ergebnisse erläutern,

damit sie
- die Lehrveranstaltungen ihres Studiengangs, in denen diese Verfahren genutzt werden, erfolgreich absolvieren können.

Inhalte des Moduls

Differenzial- und Integralrechnung für Funktionen mehrerer reeller Veränderlicher
- Partielle Ableitung, Gradient, Richtungsableitung
- Totales Differenzial, Tangentialebene
- Bereichs- und Volumenintegral
- Lineare Algebra
- Lineare Gleichungssysteme, Gauß-Verfahren, Matrizen, Determinanten
- Fehlerrechnung
<table>
<thead>
<tr>
<th>Komplexe Zahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenzialgleichungen</td>
</tr>
<tr>
<td>Gewöhnliche Differenzialgleichungen</td>
</tr>
<tr>
<td>- Differenzialgleichungen 1. und 2. Ordnung</td>
</tr>
<tr>
<td>- Einführung in Differenzialgleichungssysteme</td>
</tr>
<tr>
<td>Reihen</td>
</tr>
<tr>
<td>- Taylor-Reihen</td>
</tr>
<tr>
<td>- Fourier-Reihen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die in den Mathematik-Modulen erworbenen Fähigkeiten werden in unterschiedlichem Umfang in allen MINT-Modulen dieses Studiengangs genutzt. Sie sind ebenso in den MINT-Modulen der Bachelorstudiengänge</td>
</tr>
<tr>
<td>- Hazard Control</td>
</tr>
<tr>
<td>- Medizintechnik</td>
</tr>
<tr>
<td>- Rescue Engineering</td>
</tr>
<tr>
<td>- Umwelttechnik</td>
</tr>
<tr>
<td>- Biotechnologie</td>
</tr>
<tr>
<td>nutzbar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelhafte Prüfungsform für die Modulprüfung: 2 Klausuren (Prüfungsleistung)</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsform: 2 mündliche Prüfungen (Prüfungsleistung)</td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform wird die zu erbringende Prüfungsform von der verantwortlichen Lehrperson zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugehörige Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2</td>
</tr>
<tr>
<td>Mathematik 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr- und Lernformen/ Methoden / Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Lehrvortrag, Übungen, Kleingruppenarbeit, Selbststudium</td>
</tr>
<tr>
<td>Begleitend wird ein Tutorium zur freiwilligen Teilnahme angeboten.</td>
</tr>
<tr>
<td>Literatur/ Arbeitsmaterialien</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Lehrbücher</td>
</tr>
<tr>
<td>Engeln-Müllges, G. (Hrsg.): Kompaktkurs Ingenieurmathematik. München: Carl Hanser Verlag</td>
</tr>
<tr>
<td>Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler 1+2, Wiesbaden: Springer Vieweg Verlag</td>
</tr>
<tr>
<td>Arbeitsbücher</td>
</tr>
<tr>
<td>Kusch, L.; Jung, H.; Rüdiger, K.: Cornelsen Lernhilfen Mathematik 1-4, Berlin: Cornelsen Verlag</td>
</tr>
<tr>
<td>Turtur, C.-W.: Prüfungstrainer Mathematik. Wiesbaden: Springer Spektrum Verlag</td>
</tr>
<tr>
<td>Formelsammlungen</td>
</tr>
<tr>
<td>Papula, L.: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Wiesbaden: Springer Vieweg Verlag</td>
</tr>
<tr>
<td>Stöcker, H.: Taschenbuch mathematischer Formeln und moderner Verfahren. Frankfurt am Main: Verlag Harri Deutsch</td>
</tr>
<tr>
<td>Merziger, G.; Mühlbach, G.; Wille, D.; Wirth, T.: Formeln und Hilfen zur Höheren Mathematik. binomiverlag.de</td>
</tr>
<tr>
<td>Bachelorstudiengang Verfahrenstechnik</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Modul: Informatik</td>
</tr>
<tr>
<td>Modulkennziffer</td>
</tr>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls/ Semester / Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP) / Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| Zu erwerbende Kompetenzen / Lernergebnisse | Die Studierenden lösen
- Standardaufgaben zu den Grundlagen der Informatik und der Programmierung
dem sie
- geeignete Lösungsansätze begründet auswählen und korrekt implementieren und dokumentieren sowie die Bedeutung der Ergebnisse erläutern,
damit sie
- diese Kompetenzen erfolgreich auf alltägliche Aufgabenstellungen anwenden können, die ihnen u.a. auch in anderen Lehrveranstaltungen ihres Studiengangs begegnen werden. |
<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
<th>Grundlagenwissen: Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlegende Datentypen für Programmvariablen und Zellen in Tabellenkalkulationsprogrammen</td>
<td>• Grundlegende Datentypen für Programmvariablen und Zellen in Tabellenkalkulationsprogrammen</td>
</tr>
<tr>
<td>• Grundzüge der Funktionalität von Tabellenkalkulationsprogrammen</td>
<td>• Grundzüge der Funktionalität von Tabellenkalkulationsprogrammen</td>
</tr>
<tr>
<td>• Einfache Formeln und Anweisungen</td>
<td>• Einfache Formeln und Anweisungen</td>
</tr>
<tr>
<td>• Erstellen und Beschriften verschiedener graphischer Darstellungen für Funktionen und Daten durch Erstellung von Datenreihen und Diagrammen.</td>
<td>• Erstellen und Beschriften verschiedener graphischer Darstellungen für Funktionen und Daten durch Erstellung von Datenreihen und Diagrammen.</td>
</tr>
<tr>
<td>• Graphische Bedienungselemente in Tabellenkalkulationsprogrammen und Erstellung graphischer Benutzeroberflächen</td>
<td>• Graphische Bedienungselemente in Tabellenkalkulationsprogrammen und Erstellung graphischer Benutzeroberflächen</td>
</tr>
<tr>
<td>• Dokumentationsmöglichkeiten zur graphischen Darstellung der Gesamtlösung, die aus einzelnen Verarbeitungsschritten zusammengesetzt wird (z.B. Programmablaufpläne, UML-Aktivitätsdiagramme, etc.).</td>
<td>• Dokumentationsmöglichkeiten zur graphischen Darstellung der Gesamtlösung, die aus einzelnen Verarbeitungsschritten zusammengesetzt wird (z.B. Programmablaufpläne, UML-Aktivitätsdiagramme, etc.).</td>
</tr>
<tr>
<td>Grundlagenwissen: objektorientierte Programmierung</td>
<td>Grundlagenwissen: objektorientierte Programmierung</td>
</tr>
<tr>
<td>• Grundlegende Anweisungen und Programmstrukturen</td>
<td>• Grundlegende Anweisungen und Programmstrukturen</td>
</tr>
<tr>
<td>• Komplexere Anweisungen:</td>
<td>• Komplexere Anweisungen:</td>
</tr>
<tr>
<td>o bedingte/alternative Anweisungen in Formeln und in Programmen</td>
<td>o bedingte/alternative Anweisungen in Formeln und in Programmen</td>
</tr>
<tr>
<td>o Schleifentypen</td>
<td>o Schleifentypen</td>
</tr>
<tr>
<td>▪ kopfgesteuerte Schleifen</td>
<td>▪ kopfgesteuerte Schleifen</td>
</tr>
<tr>
<td>▪ fußgesteuerte Schleifen</td>
<td>▪ fußgesteuerte Schleifen</td>
</tr>
<tr>
<td>▪ allgemeine Schleifen</td>
<td>▪ allgemeine Schleifen</td>
</tr>
<tr>
<td>• Prozeduren und Funktionen in Programmen</td>
<td>• Prozeduren und Funktionen in Programmen</td>
</tr>
<tr>
<td>• Grundzüge des objektorientierten Programmierens: Daten und Methoden und deren Kapselung</td>
<td>• Grundzüge des objektorientierten Programmierens: Daten und Methoden und deren Kapselung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Die in den Informatik-Modulen erworbenen Fähigkeiten werden in unterschiedlichem Umfang in allen MINT-Modulen dieses Studiengangs genutzt. Sie sind ebenso in den MINT-Modulen der Bachelorstudiengänge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Hazard Control</td>
<td>• Hazard Control</td>
</tr>
<tr>
<td></td>
<td>• Medizintechnik</td>
<td>• Medizintechnik</td>
</tr>
<tr>
<td></td>
<td>• Rescue Engineering</td>
<td>• Rescue Engineering</td>
</tr>
<tr>
<td></td>
<td>• Umwelttechnik</td>
<td>• Umwelttechnik</td>
</tr>
<tr>
<td></td>
<td>• Biotechnologie</td>
<td>• Biotechnologie</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td>Informatik Praktikum 1 Informatik 2 Informatik Praktikum 2</td>
<td></td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden / Medienformen</td>
<td>seminaristischer Lehrvortrag, Übungen, Kleingruppenarbeit, Selbststudium</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur/ Arbeitsmaterialien | Lehrbücher:
 - RRZN Universität Hannover: Excel
Die Literaturangaben gelten jeweils immer in der aktuellen Fassung.
<table>
<thead>
<tr>
<th>Bachelorstudiengang Verfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: Physik A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/</td>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Gerwald Lichtenberg</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester /</td>
<td>Angebotsturnus</td>
</tr>
<tr>
<td></td>
<td>Ein Semester / 1. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (CP) /</td>
<td>Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td></td>
<td>5 CP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 h, davon Präsenzstudium 72 h, Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen /</td>
<td>Vorkenntnisse</td>
</tr>
<tr>
<td></td>
<td>keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen /</td>
<td>Lernergebnisse</td>
</tr>
<tr>
<td></td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen die physikalischen Begriffe der Mechanik und Thermodynamik um diese wiederzugeben sowie zu- und einzuführen,</td>
</tr>
<tr>
<td></td>
<td>• verstehen die wesentlichen Voraussetzungen und Zusammenhänge der mechanischen und thermodynamischen Axiome und Gesetze um daraus qualitative Aussagen abzuleiten,</td>
</tr>
<tr>
<td></td>
<td>• wenden mechanische und thermodynamische Gesetze auf technische Prozesse an um experimentelle Ergebnisse quantitativ und mit korrekten Einheiten vorauszusagen,</td>
</tr>
<tr>
<td></td>
<td>• analysieren Hypothesen mit Hilfe physikalischer Gesetze und überschlagen numerische Werte um Fehler in Aussagen, Ableitungen und Rechnungen zu finden,</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, physikalische Phänomene auszunutzen um neue Systeme mit gewünschten Eigenschaften zu entwickeln*,</td>
</tr>
<tr>
<td></td>
<td>• transferieren physikalische Inhalte und Kompetenzen in ihnen bisher unbekannte Anwendungsgebiete um neue Erkenntnisse zu erzeugen*.</td>
</tr>
<tr>
<td></td>
<td>(optionale Kompetenzen sind mit * gekennzeichnet)</td>
</tr>
<tr>
<td>Sozial- und Selbstkompetenz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>1. machen sich eigene Fehlvorstellungen bewusst und korrigieren diese,</td>
</tr>
<tr>
<td></td>
<td>2. erklären anderen Studierenden physikalische Zusammenhänge,</td>
</tr>
<tr>
<td></td>
<td>3. reflektieren physikalische Vorgänge anhand praktischer Beispiele,</td>
</tr>
</tbody>
</table>
4. kommunizieren fachbezogen in der Gruppe und mit den Lehrenden.

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
<th>Physik 1: Mechanik und Thermodynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewegung:</td>
<td>Koordinatensysteme, Maßeinheiten,</td>
</tr>
<tr>
<td></td>
<td>Strecke, Geschwindigkeit, Beschleunigung, Vektoraddition und -zerlegung, Bahkurve, Tangential- und Zentripetalbeschleunigung, Translation, Rotation, Kreisbewegung, schiefer Wurf, Relativgeschwindigkeit*, Galilei-Transformation*.</td>
</tr>
<tr>
<td>Erhaltungssätze:</td>
<td>Inertialsysteme, Masseerhaltung, Energieerhaltung, Impulserhaltung, Impulssatz, Drehimpulserhaltung, Drehimpulssatz, spezielle Relativitätstheorie*.</td>
</tr>
<tr>
<td>Thermodynamik:</td>
<td>Druck, Temperatur, Wärme, kinetische Gastheorie, ideale und reale Gase, Zustandsgrößen und -änderungen, thermodynamische Hauptsätze, Wärmeleistung*, Wärmeleitung*, Phasenübergänge*.</td>
</tr>
</tbody>
</table>

(optionale Inhalte sind mit * gekennzeichnet)

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Die in den Physik-Modulen erworbenen Fähigkeiten werden in unter-schiedlichem Umfang in allen MINT-Modulen dieses Studiengangs genutzt.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
<th>Regelhafte Prüfungsform für die Modulprüfung: Klausur (Prüfungsleistung)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere mögliche Prüfungsform: Portfolio-Prüfung (Prüfungsleistung)</td>
</tr>
<tr>
<td></td>
<td>Bei mehr als einer möglichen Prüfungsform wird die zu erbringende Prüfungsform von der verantwortlichen Lehrperson zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugehörige Lehrveranstaltungen</th>
<th>Physik 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehr- und Lernformen/ Methoden / Medienformen</th>
<th>Seminaristischer Unterricht, Übungen, Tutorien, E-Learning, Experimente</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur/ Arbeitsmaterialien</th>
<th>Giancoli D.C. Physik, Pearson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hering E., Martin R., Stohrer M. Physik für Ingenieure, Springer</td>
</tr>
<tr>
<td></td>
<td>Lindner H. Physik für Ingenieure, Hanser</td>
</tr>
<tr>
<td>Autor</td>
<td>Titel</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>McDermott L.C.</td>
<td>Tutorien zur Physik</td>
</tr>
<tr>
<td>Paus H.</td>
<td>Physik in Experimenten und Beispielen</td>
</tr>
<tr>
<td>Tipler P.A., Mosca G.</td>
<td>Physik</td>
</tr>
<tr>
<td>Halliday D., Resnick, R., Walker, J.</td>
<td>Physik</td>
</tr>
<tr>
<td>Vorlesungsskripte</td>
<td></td>
</tr>
</tbody>
</table>
Bachelorstudiengang Verfahrenstechnik

Modul: Physik B

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Gerwald Lichtenberg</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>Zwei Semester / 2. und 3. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (CP) / Semesterwochenstunden (SWS)</td>
<td>5 CP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h, Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen / Vorkenntnisse | Erforderliche Vorkenntnisse
Für das Physik-Praktikum: Modul Physik A

Empfohlene Vorkenntnisse
Für Physik 2: Modul Physik A |
| Lehrsprache | Deutsch |
| Zu erwerbende Kompetenzen / Lernergebnisse | Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden
- kennen die physikalischen Begriffe von Schwingungen und Wellen um diese wiederzugeben sowie zu- und einzuordnen,
- verstehen die wesentlichen Voraussetzungen und Zusammenhänge physikalischer Axiome und Gesetze um daraus qualitativa Aussagen abzuleiten,
- wenden physikalische Gesetze auf technische Anlagen und Prozesse an um experimentelle Ergebnisse vorauszusagen, messtechnisch zu überprüfen, informationstechnisch zu bearbeiten und zu dokumentieren,
- analysieren Hypothesen mit Hilfe physikalischer Gesetze um Fehler in Aussagen, Ableitungen und Rechnungen zu finden und wissenschaftliche Laborarbeit durchzuführen*,
- sind in der Lage, physikalische Phänomene auszunutzen und zu kombinieren um neue Systeme und Versuchsanordnungen mit gewünschten Eigenschaften zu entwickeln*.
- transferieren physikalische Inhalte und Kompetenzen in ihnen bisher unbekannte Anwendungsgebiete um neue Erkenntnisse oder Systeme zu erzeugen*.

(optionale Kompetenzen sind mit * gekennzeichnet)

Sozial- und Selbstkompetenz

Die Studierenden
5. erarbeiten sich selbständige physikalische Inhalte und Methoden,
6. erklären sich physikalische Zusammenhänge und Experimente,
7. reflektieren die Verbindungen zwischen Theorie und Experiment,
Inhalte des Moduls

Physik 2: Schwingungen und Wellen

Schwingungen:
- freie, gedämpfte und erzwungene Schwingungen,
- lineare Schwingungsdifferentialgleichung,
- Amplitudend- und Phasenfunktion,
- gekoppelte Schwingungen, Überlagerung, Schwebung, Zerlegung*, Fourier-Reihen**.

Wellen:
- Transversal- und Longitudinalwellen, Huygens-Prinzip,
- Reflexion, Brechung, Totalreflexion, Beugung, Kohärenz,
- Interferenz, Phasen- und Gruppengeschwindigkeit, stehende Wellen, Polarisation*,
- Doppler-Effekt, Anwendungen in Optik und Akustik.

Quanten:
- Lichtquanten, Röntgenstrahlung, alpha-, beta- und gamma-Strahlung, Compton-Effekt, Strahlungsgesetze, Schwarzer Strahler, Laser, Materiewellen, de Broglie-Beziehung

 (optionale Inhalte sind mit * gekennzeichnet)

Physik Praktikum

Pflicht: Erdbeschleunigung, Massenträgheitsmoment.

Wahlplicht: Pohlsches Rad + akustische Wellen oder elektromagnetischer Schwingkreis + Beugung am Gitter (2 Versuche)

Hauptversuch: Spezifische Ladung e/m, Luftkissenbahn, Crash-Versuche, Spektroskopie, Röntgenstrahlung, Oberflächenspannung und Viskosität, Solarzelle, Ultraschall, Wärmedämmung, u.a.m.

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten

Regelhafte Prüfungsform für Physik 2: Klausur (Prüfungsleistung).

Weitere mögliche Prüfungsform: Portfolio-Prüfung (Prüfungsleistung).

Praktikum: Laborabschluss (Studienleistung)

Bei mehr als einer möglichen Prüfungsform wird die zu erbringende Prüfungsform von der verantwortlichen Lehrperson zu Beginn der Lehrveranstaltung bekanntgegeben.

Zugehörige Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Physik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik-Praktikum</td>
</tr>
</tbody>
</table>

Lehr- und Lernformen/ Methoden / Medienformen

| Seminaristischer Unterricht, Übungen, Tutorien, E-Learning, Experimente (im Labor und zuhause), Praktikum. |

Literatur/ Arbeitsmaterialien

Jeweils in der aktuellen Auflage

- Giancoli D.C. *Physik*, Pearson
- Hering E., Martin R., Stohrer M. *Physik für Ingenieure*, Springer
- Lindner H. *Physik für Ingenieure*, Hanser
- McDermott L.C. *Tutorien zur Physik*, Pearson
- Paus H. J. *Physik in Experimenten und Beispielen*, Hanser
- Tipler P.A., Mosca G. *Physik*, Springer
Modulhandbuch Verfahrenstechnik B.Sc.

<table>
<thead>
<tr>
<th>Autoren / Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halliday D., Resnick, R., Walker, J. Physik, Wiley</td>
</tr>
<tr>
<td>Eichler, et al. Das Neue Physikalische Grundpraktikum, Springer</td>
</tr>
<tr>
<td>Geschke, D. Physikalisches Praktikum, Teubner</td>
</tr>
<tr>
<td>Walcher, W.: Praktikum der Physik. Teubner</td>
</tr>
<tr>
<td>Vorlesungsskripte und Versuchsunterlagen</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

Modul: Technische Mechanik 1

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Stank</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/Angebotsturnus</td>
<td>1 Semester / 1. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen /Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden ...

- sind in der Lage, Probleme zu vereinfachen und von der Umgebung isoliert zu betrachten (Anwendung des Schnittprinzips) und somit einer rechnerischen Behandlung zugänglich zu machen.
- sind in der Lage, insbesondere mit den analytischen Methoden zur Berechnung der Lagerung und der Schnittgrößen, die statische Auslegung von Konstruktionen selbständig vorzunehmen und die Kraftverläufe in Stäben oder Balken (z.B. Durchlaufträger, Fachwerke, Rahmen) zu berechnen.
- können aufgrund der wirkenden Belastungen die Verformungen der belasteten Körper bestimmen.
- können eine Analyse der Belastungen eines Körpers ausgehend von der Berechnung der Lagerreaktionen über die Berechnung der Schnittgrößen bis hin zur Beurteilung der Biegespannungen durchgehend eigenständig durchführen.

Sozial- und Selbstkompetenz

Die Studierenden ...

- können selbständig und in Kleingruppen mechanische Probleme analysieren und berechnen.
- können die Probleme ingenieurgemäß vereinfachen und deren Lösung anderen in der Diskussion überzeugt darstellen.
Inhalte des Moduls

- Newton'schen Gesetze, Grundbegriffe und Axiome der Statik
- Zentrale Kräftesysteme, Kräftegruppen und Resultierende, Moment
- Gleichgewichtsbedingungen, Freischneiden an Lagern und Verbindungen, statische Bestimmtheit und Schwerpunkt
- Schnittgrößen am Balken, Definitionen, Schnittgrößen am geraden Balken, Beziehungen zwischen den Schnittgrößen
- Zug und Druck an Stäben, Spannungen, Verformungen, Dehnungen, Stoffgesetz von Hook
- Ebener Spannungszustand, Hauptspannungen, Mohrscher Spannungskreis sowie Festigkeits-Hypothesen und Vergleichsspannungen
- Statisch bestimmte und statisch unbestimmte Systeme
- Biegung, Schnittgrößen, Spannungsverteilung, Flächenträgheitsmomente und Steiner’scher Satz,
- Differentialequation der Biegelinie (Bernoulli-Theorie), Berechnung von Biegelinien, sowie das Überlagerungsprinzip der Biegung, statisch unbestimmte Biegesysteme
- Schiefe Biegung, Schubspannungen infolge Querkraft, Schubmittelpunkt und Torsion,
- Zusammengesetzte Beanspruchung von Stäben

Verwendbarkeit des Moduls

Die in dem Modul erworbenen Fähigkeiten werden in unterschiedlichem Umfang in anderen Modulen, z.B. Konstruktion, dieses Studiengangs genutzt. Das Modul dient aber auch zur Erlernung des grundlegenden Ingenieursvorgehens, ein Problem mit seinen Interaktionen zur Umgebung zu definieren.

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

- Übliche Prüfungsform für die Modulprüfung (PL): Klausur
- Weitere mögliche Prüfungsformen (PL): mündliche Prüfung, Portfolio-Prüfung
- Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Zugehörige Lehrveranstaltungen

- Technische Mechanik 1

Lehr- und Lernformen / Methoden / Medienformen

- Seminaristischer Unterricht, Tafel, Computer/Beamer für Illustrationen, Vertiefung durch Berechnung von Aufgaben

Literatur / Arbeitsmaterialien

Jeweils in der aktuellen Auflage:
- Vorlesungsskript bzw. -folien
- Übungs- und Studienaufgaben zur Vorlesung
<table>
<thead>
<tr>
<th>Bachelor Studiengang Verfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: Technische Mechanik 2</td>
</tr>
<tr>
<td>Modulkennziffer: 7</td>
</tr>
<tr>
<td>Modulkoordination/Modulverantwortliche/r: Prof. Dr.-Ing. Stank</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/Angebotsturnus: 1 Semester / 2. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS): 5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload): 150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls: Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse: Empfohlene Vorkenntnisse Technische Mechanik 1 (Modul 6)</td>
</tr>
<tr>
<td>Lehrsprache: Deutsch</td>
</tr>
</tbody>
</table>
| **Zu erwerbende Kompetenzen / Lernergebnisse:** Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden ...
- sind in der Lage, Bewegungsprobleme mathematisch zu beschreiben. Bei Bedarf können sie komplexe Bewegungen in die Elementarbewegungen zu zerlegen und dadurch der mathematischen Beschreibung zugänglich machen.
- können die Bewegungsgrößen bewegter Körper mit Hilfe des quasistatischen Gleichgewichts ermitteln.
- sind in der Lage, aufgrund der Kraftwirkung auf einen Körper die sich daraus ergebende Körperbewegung zu bestimmen.
- können die aufgrund einer Bewegung wirkenden Lagerkräfte (dynamische Lagerkräfte) bestimmen.

Sozial- und Selbstkompetenz

Die Studierenden ...
- können selbständig und in Kleingruppen mechanische Probleme analysieren und berechnen.
- können die Probleme ingenieurgemäß vereinfachen und deren Lösung anderen in der Diskussion überzeugt darstellen.
- können in vorherigen Semestern erlernte mathematische Methoden der Differentiation bzw. der Integration im technischen Kontext der technischen Mechanik anwenden.

Inhalte des Moduls

Technische Mechanik 2
- Kinematik: Geradlinigen und gekrümmten Bewegung eines Massenpunktes sowie die Bewegung eines Körpers,
wobei Translation, Rotation und Relativbewegungen unterschieden werden.
- Definitionsgleichungen der Geschwindigkeit und der Beschleunigung sowie deren Lösung für unterschiedliche zeitabhängige Bewegungen
- Kinetik: Newtonsche Axiome zur Bestimmung der Kraftwirkung und das Prinzip von d’Alembert zur Einführung des quasistatischen Gleichgewichtes
- Behandlung von Mehrmassensystemen und kinematische Kopplung
- Schwerpunktsatz, Impulssatz, zentraler, schiefer und exzentrischer Stoß
- Impulsmoment, Momentensatz, Arbeitssatz, Energiesatz
- Haftung/Gleitreibung und Bewegungswiderstand eines Körpers
- Mechanische Prinzipien, Prinzip der virtuellen Arbeit
- Schwingungen: Freie Schwingungen des ungedämpften und gedämpften Masse-Feder-Systems sowie erzwungene Schwingungen des Masse-Feder-Systems, Resonanz
- Herleitung der Energieerhaltung aus dem 2. Newtonschen Gesetz, freie Systeme und Erhaltungsgleichungen

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Die in dem Modul erworbenen Fähigkeiten werden in unterschiedlichem Umfang in anderen Modulen, wie z.B. Konstruktion, dieses Studiengangs genutzt. Das Modul dient aber auch zur Erlernung des grundlegenden Ingenieursvorgehens, ein Problem mit seinen Interaktionen zur Umgebung zu definieren.</th>
</tr>
</thead>
</table>
| Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen) | Übliche Prüfungsform für die Modulprüfung (PL): Klausur
Weitere mögliche Prüfungsformen: mündliche Prüfung, Portfolio-Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben. |
| Zugehörige Lehrveranstaltungen | Technische Mechanik 2 |
| Lehr- und Lernformen/Methoden/Medienformen | Seminaristischer Unterricht, Tafel, Computer/Beamer für Illustrationen, Vertiefung durch Berechnung von Aufgaben |
| Literatur/Arbeitsmaterialien | Jeweils in der aktuellen Auflage:
- Vorlesungsskript bzw. -folien
- Übungs- und Studienaufgaben zur Vorlesung |
Bachelorstudiengang Verfahrenstechnik

Modul: Thermodynamik

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr. Marc Hölling</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/ Angebotsturnus</td>
<td>1 Semester / 2. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
<td>5 LP/ 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/ Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| Zu erwerbende Kompetenzen / Lernergebnisse | Fachlich-inhaltliche und methodische Kompetenzen
Die Studierenden …
- kennen die in der Thermodynamik auftretenden Grundoperationen und Prozesse.
- sind in der Lage, einfache technische Prozesse thermodynamisch zu beschreiben und methodisch auszulegen.

Sozial- und Selbstkompetenz
Die Studierenden …
- sind in der Lage, sich mit Lerninhalten auseinanderzusetzen.
- sind in der Lage, einzelne Themenbereiche eigenständig zu bearbeiten und in Übungen der Gruppe vorzutragen. |
| Inhalte des Moduls | Ideales Gasgesetz
- Zustandsänderungen von Gasen in geschlossenen Systemen
- Zustandsänderungen von Gasen in offenen Systemen
- Energie- und Leistungsbilanzen (Wärme, Arbeit, innere Energie, Enthalpie)
- das Verhalten reiner Stoffe (Verdampfung, Kondensation, Unterkühlung, Überhitzung) |
- Gas-/Dampfgemische (Trocknungsprozesse, Klimatechnik)
- Energieumwandlungsprozesse (Dampfkraftprozess, Gasturbinenprozess, GuD-Prozess, Kompressionskälteanlagen, Kompressionswärmpumpen, Otto-, Diesel-, Carnot- und Stirlingprozess)
- weitergehende Analyse mit Hilfe von Entropie- und Exergieberechnungen

Verwendbarkeit des Moduls
Studiengangsspezifisches Modul. Die vermittelten grundlegenden Kenntnisse werden z.B. in den Modulen Thermische Verfahrenstechnik 1 und 2 und Chemische Verfahrenstechnik 1 und 2 genutzt.

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)
- Übliche Prüfungsform für die Modulprüfung (PL): Klausur
- Weitere mögliche Prüfungsformen: mündl. Prüfung
- Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Zugehörige Lehrveranstaltungen
Thermodynamik

Lehr- und Lernformen/Methoden/Medienformen
Seminaristischer Unterricht mit integrierten Übungen und umfangreichen Übungsaufgaben zur gezielten Nachbereitung, Tafel, Folie, Beamer

Literatur/Arbeitsmaterialien
Jeweils in der aktuellen Auflage:
- Baehr, H. D. und Kabelac, S. Thermodynamik – Grundlagen und technische Anwendungen. Heidelberg: Springer Verlag
- Umfangreiche Aufgabensammlungen und Altklausuren mit Lösungen
Bachelor Studiengang Verfahrenstechnik

Modul: Chemie 1

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr. Bettina Knappe</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 1. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden …

- verstehen, dass die Grundlagen der Chemie Teil unserer technologischen Kultur sind.
- besitzen wissenschaftlich fundierte, grundlagen- und methodenorientierte Kenntnisse zur allgemeinen und anorganischen Chemie.
- sind in der Lage, die Grundlagen und die Prinzipien der Allgemeinen und Anorganischen Chemie darzustellen und können diese auf die spezifischen Studieninhalte bzw. Eigenschaften und Reaktionen von Stoffen beziehen.
- besitzen die Fähigkeit, zentrale Fragestellungen der Chemie zu skizzieren sowie fachliche Fragen selbst zu entwickeln.
- sind in der Lage Methoden der Chemie zu beschreiben und zu anwenden.

Sozial- und Selbstkompetenz

Die Studierenden …

- sind in der Lage, einzelne Themenbereiche eigenständig zu erarbeiten und in Tafelübungen der Gruppe vorzutragen.

Inhalte des Moduls

- Aufbau der Materie
- Reaktionsgleichungen und Stöchiometrie
- Einführung in die Gasgesetze
- Radioaktivität
- Atombau (Bohrsches Atommodell, Orbitalmodell)
<table>
<thead>
<tr>
<th>Modulhandbuch Verfahrenstechnik B.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Die in den Chemie-Modulen erworbenen Fähigkeiten werden in unterschiedlichem Umfang in allen MINT-Modulen dieses Studiengangs genutzt.</td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
</tr>
<tr>
<td>Übliche Prüfungsform für die Modulprüfung (PL): Klausur</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsformen: Hausarbeit, mündliche Prüfung</td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
</tr>
<tr>
<td>• Chemie 1 (Allgemeine und Anorganische Chemie)</td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden / Medienformen</td>
</tr>
<tr>
<td>Seminaristischer Unterricht / Vorlesung mit integrierten Übungen und Experimenten</td>
</tr>
<tr>
<td>Literatur/ Arbeitsmaterialien</td>
</tr>
<tr>
<td>Jeweils in der aktuellen Auflage:</td>
</tr>
<tr>
<td>• Arbeitsblätter</td>
</tr>
</tbody>
</table>
Modulhandbuch Verfahrenstechnik B.Sc.

Bachelor Studiengang Verfahrenstechnik

Modul: Chemie 2

<table>
<thead>
<tr>
<th>Modulkennziffer:</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulvertretung:</td>
<td>Prof. Dr. Jörg Andrä</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>Vorlesung gesamtes Semester und Praktikum geblockt, ein Semester / 2. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
<td>5 LP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/ Vorkenntnisse</td>
<td>Empfohlene Vorkenntnisse: Chemie 1 (Modul 9)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
</tbody>
</table>

Die Studierenden ...
- erkennen, dass die Organische Chemie Teil unserer technologischen Kultur ist und kein Spezialgebiet für den Fachmann/-frau.
- kennen die Grundlagen und die Prinzipien der Organischen Chemie und können diese auf die spezifischen Studieninhalte beziehen sowie Eigenschaften und Wirkungen von Stoffen besser verstehen bzw. sie beeinflussen.
- sind in der Lage, aus der Struktur eines organischen Moleküls die Reaktionen abzuleiten, die es eingehen kann.
- sind in der Lage, auch die einzelnen Schritte, den Mechanismus, zu erkennen, nach denen ein bestimmter Reaktions typ abläuft.

Sozial- und Selbstkompetenz
Die Studierenden ...
- sind in der Lage, einzelne Themenbereiche eigenständig zu erarbeiten und in Tafelübungen der Gruppe vorzutragen.
- können selbständig mit chemischen Arbeitsmaterialien (Gerätschaften und Chemikalien) umgehen.
- sind in der Lage, in Kleingruppen selbständig Aufgabenstellungen aus dem Gebiet der Chemie experimentell zu bearbeiten und die Ergebnisse zu protokollieren.
Inhalte des Moduls

- Historische Entwicklung der Organischen Chemie, das Element Kohlenstoff, organische Verbindungen, Nomenklatur
- Theoretische Grundlagen wie Atom- und Molekülorbitale, kovalente Bindung, Konstitution, Konfiguration, Isomerie, Stereochemie
- Stoffchemie: Alkane und Cycloalkane, Alkene, Alkine, Aromaten, Alkohole, Amine, Aldehyde und Ketone, Carbonsäuren und Derivate

Chemisches Praktikum:
- Sicheres Arbeiten im Labor, Gefahrstoffverordnung
- Titration (Säure-Base-Titration, komplexometrische Titration)
- Photometrie (Metallkomplexe)
- Schnelltest-Analytik von wässrigen und gasförmigen Proben
- Destillation von Ethanol
- Leitfähigkeitsmessung von Salzlösungen
- Qualitative Analyse von Kationen

Verwendbarkeit des Moduls

Die in den Chemie-Modulen erworbenen Fähigkeiten werden in unterschiedlichem Umfang in allen MINT-Modulen dieses Studiengangs genutzt.

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Übliche Prüfungsform für die Vorlesung Chemie 2 (SL): Klausur

Weitere mögliche Prüfungsformen: mündliche Prüfung, Hausarbeit

Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Praktikum (SL): 1 Laborabschluss
(Protokollierung der Ergebnisse und Prüfungsanalyse)

Zugehörige Lehrveranstaltungen

- Chemie 2 (Organische Chemie)
- Chemie Praktikum

Lehr- und Lernformen/Methoden / Medienformen

Seminaristischer Unterricht / Vorlesung mit integrierten Übungen und Experimenten, Praktikum

Literatur/Arbeitsmaterialien

- Kremer, B.P., Bannwarth, H., Einführung in die Laborpraxis, Springer Verlag.
Modulhandbuch Verfahrenstechnik B.Sc.

- Organikum. Organisch-chemisches Grundpraktikum
- Vollhardt, K.-P.-C. Organische Chemie. Weinheim: Wiley-VCH
- Arbeitsblätter
- Praktikumsskript
Bachelor Studiengang Verfahrenstechnik

Modul: Werkstofftechnik

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr. Sadlowsky</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 1. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 86 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen/Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden ...

- können die Erkenntnisse der Werkstoffwissenschaften aufgreifen und sie gezielt auf den Bereich des Anlagen- und Apparatebaus übertragen.
- können geeignete Werkstoffe und deren Kombinationen für den Einsatz im Anlagen- und Apparatebau auswählen.
- sind in der Lage, die überaus große Zahl werkstoffkundlicher Einzelinformationen zum Gruppenverhalten zu bündeln und so einfache Regeln für den Einsatz der Werkstoffe im Anlagen- und Apparatebau abzuleiten.
- sind in der Lage, anhand einer Aufgabenstellung Konzeptvarianten mit verschiedenen Lösungsmöglichkeiten technisch zu entwickeln und kritisch zu bewerten.

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage, ...

- auf der Grundlage des erworbenen Verständnisses zwischen theorieorientierten Werkzeugwissenschaften und anwendungsorientierten Praktikern zu vermitteln
- kommunikative Probleme zu beseitigen und den direkten Weg von wissenschaftlicher Erkenntnis in die praktische Anwendung zu ebnen.

Inhalte des Moduls

- Der molekulare Aufbau der Werkstoffe, Einordnung der Werkstoffe in Werkstoffhauptgruppen
- Metallkunde: Die metallische Bindung, Aufbau der Metalle, Gitteraufehler, Gefüge
- Verhalten der Metalle bei Beanspruchung
<table>
<thead>
<tr>
<th>Modulhandbuch Verfahrenstechnik B.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
</tr>
<tr>
<td>Übliche Prüfungsform für die Modulprüfung (PL): Hausarbeit</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsformen: Klausur, mündl. Prüfung</td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
</tr>
<tr>
<td>• Werkstofftechnik</td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden/Medienformen</td>
</tr>
<tr>
<td>Seminaristischer Lehrvortrag (Vortrag, Tafel, Folien, PPT/Beamer, Modelle), Selbststudium; Fallbeispiele</td>
</tr>
<tr>
<td>Literatur/Arbeitsmaterialien</td>
</tr>
<tr>
<td>Jeweils in der aktuellen Auflage:</td>
</tr>
<tr>
<td>• Biederbick, K.-H. Kunststoffe. Würzburg: Vogel Verlag.</td>
</tr>
<tr>
<td>• Hornbogen, E. Werkstoffe. Berlin u.a.: Springer Verlag.</td>
</tr>
<tr>
<td>• Ignatowitz, E. Werkstofftechnik für Metallbauberufe. Haan-Gruiten: Verlag Europa-Lehrmittel.</td>
</tr>
<tr>
<td>• Skript: Werkstoffkunde, Prof. Dr. Ing. R. Badura</td>
</tr>
</tbody>
</table>
Bachelorstudiengang Verfahrenstechnik

Modul: Elektrotechnik

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Holger Mühlberger</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>Ein Semester / 2. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (CP) / Semesterwochenstunden (SWS)</td>
<td>5 CP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h, Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>Empfohlene Vorkenntnisse</td>
</tr>
<tr>
<td>Motor Mathematik A und Physik A</td>
<td>Teilnahme an den Lehrveranstaltungen Mathematik 2 sowie Physik 2 parallel zu Elektrotechnik</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

 Studierende können unter Anwendung von grundlegenden Kenntnissen und Methoden der Elektrotechnik messtechnische Prinzipien sowie deren Funktion, erklären und beim Lösen von Aufgabenstellungen anwenden, indem sie

- auf Grundlage der physikalischen Vorgänge das Verhalten elektrischer Bauteile beschreiben können,
- elektrotechnische Gesetze im Rahmen anderer Naturgesetze einordnen können,
- Schaltungen berechnen und komplexe Schaltungen durch Ersatzschaltungen vereinfachen können,
- selbstständig und teamorientiert Aufgaben lösen können,
- ihre Ergebnisse selbstkritisch hinterfragen,
- interdisziplinäre Verflechtungen erkennen, um elektrotechnische Erkenntnisse in weiterführende Themengebiete, z.B. der Messtechnik zu transferieren und anzuwenden und um nach dem Studium mit Elektroingenieuren zusammenzuarbeiten.

Inhalte des Moduls

| Grundlagen |
| Ladung, Strom, Spannung, Ohmsches Gesetz, Widerstand und dessen Temperaturabhängigkeit, Leistung, Wirkungsgrad |
| Gleichstrom |
| Kirchhoffsche Gesetze, Strom- und Spannungsquellen, Reihen- und Parallelschaltung von Widerständen, Spannungsteiler, Netzwerkberechnung, Messmethoden elektrischer Größen |
| Einführung in die Halbleiter und Halbleiterbauelemente: Elektronen- und Löcherleitung, Bändermodell, Temperaturabhängigkeit, pn-Übergang, Metall-Halbleiter-
Übergang, Dioden, deren Funktionsweise und Kenndaten, Z-, Photo-, Kapazitäts-, Schottkydiode, LED, Laser, Anwendungen wie Gleichrichter, Spannungsstabilisierung
Bipolartransistoren und Feldeffektransistoren (FETs), deren Funktionsweise, Kenndaten, Grundschaltungen als Verstärker, Schalter, digital und als Hochleistungsbauelement, sowie als Sensor
Elektrisches Feld
Feldstärke, Potential, Feldlinien, Fluss, Influenz, Abschirmung, EMV, Coulombsches Gesetz, Dielektrika, Kondensatoren, Energie des Feldes, Schaltvorgänge mit Kondensatoren, Kondensator als Bauelement

Magnetisches Feld
Feldlinien, Feldstärke, Flussdichte, Permeabilität, Durchflutungsgesetz, Dia-, Para- und Ferromagnetismus, Lorentzkraft, Hall-Effekt, Induktion, Lenzsche Regel, Induktivität, Generatorprinzip, Spulen, Schaltvorgänge mit Spulen, Spule als Bauelement

Wechselstrom

|--------------------------|--|
| Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen) | Regelhafte Prüfungsform für das Modul: Klausur (Prüfungsleistung)
Weitere mögliche Prüfungsformen: Mündliche Prüfung (Prüfungsleistung), Portfolioprüfung (Prüfungsleistung)
Bei mehr als einer möglichen Prüfungsform wird die zu erbringende Prüfungsform von der verantwortlichen Lehrperson zu Beginn der Lehrveranstaltung bekannt gegeben. |
| Zugehörige Lehrveranstaltungen | Elektrotechnik |
| Lehr- und Lernformen/Methoden/Medienformen | Seminaristischer Unterricht, Übungen, Selbststudium |
| Literatur/Arbeitsmaterialien | Jeweils in der aktuellen Auflage:
Hagmann, Grundlagen der Elektrotechnik, Aula-Verlag
Hering/Bressler/Gutekunst, Elektronik für Ingenieure und Naturwissenschaftler, Springer-Verlag
Skripte |
Modulhandbuch Verfahrenstechnik B.Sc.

<table>
<thead>
<tr>
<th>Bachelor Studiengang Verfahrenstechnik</th>
</tr>
</thead>
</table>

Modul: Strömungsmechanik

<table>
<thead>
<tr>
<th>Modulkennziffer:</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/</td>
<td>Prof. Dr.-Ing. Stank</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td></td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/</td>
<td>1 Semester / 3. Semester / jedes Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (LP)/</td>
<td>5 LP/</td>
</tr>
<tr>
<td>Semesterwochenstunden (SWS)</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen/</td>
<td>Empfohlene Vorkenntnisse</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematik B (Modul 2)</td>
</tr>
<tr>
<td></td>
<td>Physik A / B (Module 4 / 5)</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik 2 (Modul 7)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen/</td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden ...</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, mit strömungsmechanischen Problemen umzugehen.</td>
</tr>
<tr>
<td></td>
<td>• können in technischen Anlagen auftretende Strömungen berechnen und bei Bedarf optimieren.</td>
</tr>
<tr>
<td></td>
<td>• können Apparate und Anlagen strömungsmechanisch dimensionieren, gestalten und berechnen. Bei der Auslegung können sie ebenfalls wirtschaftliche Gesichtspunkte mit berücksichtigen und Optimierungsansätze entwickeln.</td>
</tr>
<tr>
<td></td>
<td>• können fächerübergreifend Anlagenkomponenten und Apparate auslegen und dabei die Gesetze der Strömungsmechanik anwenden.</td>
</tr>
<tr>
<td></td>
<td>• lernen, in der Mathematik erlernte Methoden auf strömungstechnische Problemstellungen anzuwenden.</td>
</tr>
<tr>
<td></td>
<td>Sozial- und Selbstkompetenz</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden ...</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage in Kleingruppen selbständig die entscheidenden Prozessschritte bei der Anlagenauslegung und Gestaltung zu berechnen.</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, die Ergebnisse innerhalb einer Kleingruppe zu diskutieren und sie zu präsentieren.</td>
</tr>
</tbody>
</table>
• beherrschen die eigenständige Lösung technischer Aufgabenstellungen, die ggf. in mehreren Schritten aufeinander und unter anderem auf den Gesetzen der Strömungsmechanik aufbauen.

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
<th>Strömungsmechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bilanzprinzipien der Strömungsmechanik: Massenerhaltung, Kräftegleichgewicht (Impulssatz), Energieerhaltung</td>
</tr>
<tr>
<td></td>
<td>Druckverteilung und Kräfte in stehenden Fluiden, Auftrieb und Schwimmen</td>
</tr>
<tr>
<td></td>
<td>Eindimensionale Berechnung inkompressibler und kompressibler Strömungen (Stromröhre) mit Berücksichtigung der Reibung und des Energieaustausches</td>
</tr>
<tr>
<td></td>
<td>Verlustberechnung für Strömungen in Rohrleitungen und verfahrenstechnischen Anlagen</td>
</tr>
<tr>
<td></td>
<td>Formulierung des Energiesatzes für kompressible Strömungen</td>
</tr>
<tr>
<td></td>
<td>Bedeutung der dimensionslosen Kennzahlen in der Strömungsmechanik</td>
</tr>
<tr>
<td></td>
<td>Impuls- und Drallsatz zur Bestimmung vom Fluid übertragener Kräfte</td>
</tr>
<tr>
<td></td>
<td>Navier-Stokes-Gleichungen und Newtonscher Schubspannungsansatz, Stokes Hypothese</td>
</tr>
<tr>
<td></td>
<td>schleichende Strömungen, Couette und Hagen Poiseuille Strömungen</td>
</tr>
<tr>
<td></td>
<td>laminare und turbulente Strömungen und Methoden zu deren Beschreibung</td>
</tr>
<tr>
<td></td>
<td>Ähnlichkeitsgrößen der Strömungsmechanik</td>
</tr>
</tbody>
</table>

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)	Übliche Prüfungsform für die Modulprüfung (PL): Klausur
	Weitere mögliche Prüfungsformen: Portfolio Prüfung, mündl. Prüfung
	Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

| Zugehörige Lehrveranstaltungen | Strömungsmechanik |

| Lehr- und Lernformen / Methoden / Medienformen | Powerpoint- Präsentation mittels Beamer, Herleitungen mittels Tafel, Filmvorführungen zur Verdeutlichung physikalischer Grundlagen. Vertiefung durch Berechnung von Aufgaben, Software |

<table>
<thead>
<tr>
<th>Literatur / Arbeitsmaterialien</th>
<th>Jeweils in der aktuellen Auflage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulhandbuch Verfahrenstechnik B.Sc.</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>• Junge, G. Einführung in die Technische Strömungslehre. Hanser Verlag.</td>
<td></td>
</tr>
<tr>
<td>• Vorlesungsskript bzw. -folien</td>
<td></td>
</tr>
<tr>
<td>• Übungs- und Studienaufgaben zur Vorlesung</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

<table>
<thead>
<tr>
<th>Modul: Wärme- und Stoffübertragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkennziffer</td>
</tr>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage, …

• in Kleingruppen selbständig die entscheidenden Prozessschritte bei der Anlagenauslegung und Gestaltung zu berechnen, innerhalb einer Kleingruppe zu diskutieren und die Ergebnisse zu präsentieren.

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Wärmeleitung, Fouriersches Gesetz</td>
</tr>
<tr>
<td>– Wärmeübergangskoeffizienten</td>
</tr>
<tr>
<td>– Wärmestrahlung, Strahlungsaustausch</td>
</tr>
<tr>
<td>– Wärmedurchgang</td>
</tr>
<tr>
<td>– Konvektiver Wärmeübergang ohne und mit Phasenänderung, Verdampfung, Kondensation</td>
</tr>
<tr>
<td>– Dimensionslose Kennzahlen, Ähnlichkeitstheorie</td>
</tr>
<tr>
<td>Modulhandbuch Verfahrenstechnik B.Sc.</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Die in dem Modul erworbenen Fähigkeiten werden in unterschiedlichem Umfang in anderen Veranstaltungen dieses Studiengangs, wie Thermische Verfahrenstechnik 1 und 2, genutzt.</td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
</tr>
<tr>
<td>Übliche Prüfungsform für die Modulprüfung (PL): Klausur</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsformen: Hausarbeit, mündl. Prüfung</td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
</tr>
<tr>
<td>• Wärme- und Stoffübertragung</td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden / Medienformen</td>
</tr>
<tr>
<td>Powerpoint-Präsentation mittels Beamer, Herleitungen mittels Tafel, Filmvorführungen zur Verdeutlichung physikalischer Grundlagen. Vertiefung durch Berechnung von Aufgaben, Software</td>
</tr>
<tr>
<td>Literatur/ Arbeitsmaterialien</td>
</tr>
<tr>
<td>Jeweils in der aktuellen Auflage:</td>
</tr>
<tr>
<td>• Ignatowitz, E. Chemietechnik: Verlag Europa-Lehrmittel.</td>
</tr>
<tr>
<td>• Ullmann, F. und Bartholomé, E. Ullmanns Encyklopädie der technischen Chemie I Band 1 & 2, Weinheim, Bergstraße: Verlag Chemie.</td>
</tr>
<tr>
<td>• Wagner, W. Wärmeübertragung: Grundlagen, Würzburg: Vogel Verlag Und Druck.</td>
</tr>
</tbody>
</table>

47
Bachelor Studiengang Verfahrenstechnik

Modul: Betriebswirtschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Modulkennziffer: 15</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr. Dominik Kunz</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 3. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
<td>7 LP/ 6 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>210 h, davon Präsenzstudium 108 h (6 SWS), Selbststudium 102 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevereinfassungen/ Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden...

- können die Instrumente, die für eine Nutzen-/Gewinnmaximierung ausgerichtete wirtschaftliche Unternehmensführung unerlässlich sind, spezifisch auf die Unternehmenssituation anwenden.
- können rechtsgeschäftlich handeln. Insbesondere kennen sie die rechtliche Relevanz des eigenen Handelns, so dass Rechtsstreitigkeiten von vornherein vermieden werden können.
- sind in der Lage, für erbrachte betriebliche Leistungen die Kosten und Angebotspreise zu kalkulieren.
- beherrschen die Planung, Kontrolle und Steuerung der betrieblichen Prozesse der Leistungserstellung auf der Grundlage geeigneter Kosteninformationen.

Sozial- und Selbstkompetenz

Die Studierenden...

- sind in der Lage, in Kleingruppen selbständig die entscheidenden Schritte der Unternehmensführung zu erarbeiten.
- die Ergebnisse innerhalb einer Kleingruppe zu diskutieren und sie zu präsentieren.

Inhalte des Moduls

Betriebswirtschaft

- Unternehmung, Betrieb, Firma, Gewerbe / Handelsgewerbe und freiberufliche Tätigkeit
<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Aufbau von nicht-technischen Schlüsselkompetenzen, die z.B. im Studien schwerpunkt "Projektierung verfahrenstechnischer Anlagen Anwendung finden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td>• Recht • Betriebswirtschaftslehre • Kostenrechnung</td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden / Medienformen</td>
<td>seminaristischer Lehrvortrag, Kleingruppenarbeit, Selbststudium, Tafel, Beamer</td>
</tr>
<tr>
<td>Literatur/ Arbeitsmaterialien</td>
<td>Jeweils in der aktuellen Auflage:</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>• Freidank, C.-Ch. Kostenrechnung, 8. überarb. und erw. Auflage. München [u.a.]: Oldenbourg Verlag.</td>
</tr>
<tr>
<td></td>
<td>• Zdrowomsylaw, N.; unter Mitarbeit von Götze, W. Kosten-Leistungs- und Erlösrechnung. München [u.a.]: Oldenbourg Verlag.</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

Modul: Konstruktion, Anlagentechnik

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. F. Beyer</td>
</tr>
<tr>
<td>Dauer des Moduls /</td>
<td>2 Semester / 3. und 4. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Semester / Angebotsturnus</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (LP)/</td>
<td>8 LP/</td>
</tr>
<tr>
<td>Semesterwochenstunden (SWS)</td>
<td>7 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>240 h, davon Präsenzstudium 126 h (7 SWS), Selbststudium 114 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>Erforderliche Vorkenntnisse für die Vorlesung Konstruktion Technische Mechanik 1 (Modul 6) Werkstofftechnik (Modul 11)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
</tbody>
</table>

Die Studierenden...

- können die Stellung der Konstruktion innerhalb des Produktlebenszyklusses einordnen und kennen die umfangreichen Verflechtungen.
- kennen den Ablauf eines Konstruktionsprozesses.
- kennen CAX-Systeme und deren Verflechtung.
- kennen ausgewählte Elemente und Komponenten, die in verfahrenstechnischen Anlagen vorkommen, deren Funktion sowie Auswahlkriterien.
- kennen den Lebenszyklus verfahrenstechnischer Anlagen sowie den Inhalt der einzelnen Phasen.
- kennen die Phasen des Planungsprozesses verfahrenstechnischer Anlagen nebst wesentlicher Tätigkeiten, Verflechtungen und Dokumente.
- kennen die Struktur verfahrenstechnischer Anlagen, ausgewählter Hilfs- und Nebenanlagen sowie deren Auswahlkriterien.
- sind in der Lage, technische Zeichnungen zu lesen.
- sind in der Lage, Elemente auszuwählen und auszulegen sowie Konstruktionen zu bewerten.
- sind in der Lage, ausgehend von konstruktiven Fragestellungen, Lösungen zu erarbeiten und zu beurteilen.
- sind in der Lage, die Funktion von Hilfs- und Nebenanlagen zu erklären sowie diese für den spezifischen Anwendungsfall auszuwählen.
Sozial- und Selbstkompentenz

Die Studierenden...

- erkennen, dass es in der Praxis aufgrund der Vielzahl von Verflechtungen und beteiligten Parteien auf eine gute Zusammenarbeit ankommt.
- erkennen, dass es bei der Lösungssuche in der Gruppe auf ein offenes und tolerantes Verhalten ohne vorschnelle Urteile ankommt.
- können basierend auf der Kenntnis der konstruktiven sowie anlagen- bzw. anlagenbauspezifischen Zusammenhänge im späteren Berufsleben eigenständig Aufgaben bearbeiten.
- erkennen, dass aufgrund der Komplexität verfahrenstechnischer Anlagen, bzw. Teilanlagen, eine ganzheitliche Betrachtung erforderlich ist.

Inhalte des Moduls

<table>
<thead>
<tr>
<th>Konstruktion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Einführung, Definitionen, Begriffe</td>
</tr>
<tr>
<td>- Überblick über CAx-Anwendungen</td>
</tr>
<tr>
<td>- Übersicht über das Gebiet „technisches Zeichnen“</td>
</tr>
<tr>
<td>- Toleranzen, Passungen, techn. Oberflächen</td>
</tr>
<tr>
<td>- Gesetze, Richtlinien, Normen, Standards</td>
</tr>
<tr>
<td>- Konstruktionsprozess gemäß VDI Richtlinie 2221 (Planen, Konzipieren, Entwerfen, Ausarbeiten)</td>
</tr>
<tr>
<td>- Festigkeitsberechnung</td>
</tr>
<tr>
<td>- Elemente, wie z.B. Achsen, Wellen, Lager, Schweißverbindungen, Federhänger (Schraubenfeder), Armaturen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anlagentechnik:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lebenszyklus einer Anlage</td>
</tr>
<tr>
<td>- Anlagenbau – Phasen, Inhalte, beteiligte Disziplinen und Parteien, Verflechtungen</td>
</tr>
<tr>
<td>- Hauptdokumente der Verfahrenstechnik (u.a. Fließbilder)</td>
</tr>
<tr>
<td>- Inbetriebnahme</td>
</tr>
<tr>
<td>- Lage-, Aufstellungs- sowie Rohrleitungsplanung</td>
</tr>
<tr>
<td>- Wasser- und Dampfsysteme</td>
</tr>
<tr>
<td>- Kältetechnik</td>
</tr>
<tr>
<td>- Erzeugung technischer Gase</td>
</tr>
<tr>
<td>- Energieversorgung verfahrenstechnischer Anlagen</td>
</tr>
<tr>
<td>- Einrichtungen zum Fördern, Lagern und Dosieren von Feststoffen</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Übliche Prüfungsform für die Modulprüfung (PL): Klausur

Weitere mögliche Prüfungsformen: Hausarbeit, mdl. Prüfung, Referat, Portfolioprüfung

Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.
| Zugehörige Lehrveranstaltungen | • Konstruktion
• Anlagentechnik |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr- und Lernformen / Methoden / Medienformen</td>
<td>Vorlesung (Vortrag, Tafel, PPT/Beamer, Modelle), Selbststudium</td>
</tr>
</tbody>
</table>
| Literatur/ Arbeitsmaterialien | Jeweils in der aktuellen Auflage:
• Sattler, K. Verfahrenstechnische Anlagen: Planung, Bau und Betrieb, 1. Aufl. Weinheim: Wiley-VCH.
• Vorlesungsunterlagen |
<table>
<thead>
<tr>
<th>Bachelor Studiengang Verfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: Praktikum Konstruktion / Anlagenplanung</td>
</tr>
<tr>
<td>Modulkennziffer</td>
</tr>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
</tbody>
</table>
| Zu erwerbende Kompetenzen / Lernergebnisse | Fachlich-inhaltliche und methodische Kompetenzen
Die Studierenden
- kennen die wesentlichen Funktionen der eingesetzten Softwarepakete
- können mit Hilfe der eingesetzten Softwarepakete skizzieren, konstruieren, bzw. modellieren, und entsprechende Zeichnungen und Dokumente generieren
- sind in der Lage, Aufgabenstellungen mit Hilfe der eingesetzten Softwarepakete selbstständig zu bearbeiten.

Sozial- und Selbstkompetenz
Die Studierenden
- sind in der Lage, die eingesetzten Programme auf veränderte Aufgabenstellungen und unterschiedliche Situationen anzupassen.
- Können selbstständig technische Entscheidungen treffen.
- sind in der Lage, in Kleingruppen die ablauforientiert beste Lösung zur Erstellung einer Bauteil-Konstruktion sowie verfahrenstechnischen Anlage zu erarbeiten und zu präsentieren.

Inhalte des Moduls | CAD-Praktikum:
- Konstruieren mit einem weit verbreiteten Softwarepaket
- Grund- und Hilfsfunktionen
- Erstellung von Skizzen und Modellen
- Definition von Schnitten
- Ableiten von Zeichnungen
- Übungen und Abschlussarbeit
3D-Anlagenplanung (Praktikum)
- Abbildung eines Anlagenplanungsprozesses mit einem weit verbreitetem Softwarepaket
- Arbeiten mit der „3-D View“, Ansichten
- Attribute, Rotation und Position
- Bauteile positionieren, orientieren, verbinden, etc.
- Trainingsprojekt 2000, Fundament erstellen, positionieren, etc.
- Apparate erstellen, kopieren, dimensionieren, etc.
- Rohrleitungen erstellen, positionieren, verändern
- Bauteile einfügen und ausrichten
- Übungen und Abschlussarbeit

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übliche Prüfungsform für CAD-Praktikum (SL): Konstruktionsarbeit</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsform: Laborabschluss</td>
</tr>
<tr>
<td>Übliche Prüfungsform für 3D-Anlagenplanung (Praktikum) (SL): Konstruktionsarbeit</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsform: Laborabschluss</td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugehörige Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CAD Praktikum</td>
</tr>
<tr>
<td>• 3D-Anlagenplanung (Praktikum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr- und Lernformen/Methoden/Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vortrag, Kleingruppenarbeit, Selbststudium; Übungen am PC, Fallbeispiele</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur/Arbeitsmaterialien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeweils in der aktuellen Auflage:</td>
</tr>
<tr>
<td>• Handbücher der benutzten Softwarepakete</td>
</tr>
<tr>
<td>• Praktikumsunterlagen, Übungsaufgaben</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

Modul: Apparate und Maschinen

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. F. Beyer</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 4. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>7 LP/6 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>210 h, davon Präsenzstudium 108h (6 SWS), Selbststudium 102 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| Teilnahmeveraussetzungen/Vorkenntnisse | Erforderliche Vorkenntnisse
Technische Mechanik 2 (Modul 7) für Apparatebau
Werkstofftechnik (Modul 11) für Apparatebau
Empfohlene Vorkenntnisse
Strömungsmechanik (Modul 13) für Pumpen und Verdichteranlagen |
| Lehrsprache | Deutsch |
| Zu erwerbende Kompetenzen / Lernergebnisse | Fachlich-inhaltliche und methodische Kompetenzen
Die Studierenden ...
• kennen wesentliche Apparate und Maschinen, die in verfahrenstechnischen Anlagen vorkommen.
• kennen die Elemente des Apparatebaus sowie im Apparatebau verwendete Werkstoffe nebst Auswahlkriterien.
• kennen die Grundlagen für die Auslegung von Apparaten und Maschinen.
• kennen die für die Spezifikation und Beschaffung von Apparaten erforderlichen Angaben sowie die relevanten Kriterien.
• sind in der Lage, für den Anwendungsfall geeignete Apparate zu spezifizieren, d.h. geeignete Elemente und Werkstoffe auszuwählen sowie die erforderlichen Angaben zu machen.
• sind in der Lage, die Konstruktion von Apparaten zu bewerten.
• sind in der Lage, Apparate nach einem Regelwerk auszulegen.
Sozial- und Selbstkompetenz
Die Studierenden ...
• kennen die Herangehensweise bei der Auswahl und Beschaffung von Apparaten und Maschinen. |
Modulhandbuch Verfahrenstechnik B.Sc.

- erkennen die Wichtigkeit einer guten Zusammenarbeit mit den unterschiedlichsten Disziplinen um zu einer optimalen Lösung zu gelangen.

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
<th>Apparatebau:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Einführung, Definitionen, Begriffe</td>
<td>- Lebenszyklus von Apparaten</td>
</tr>
<tr>
<td>- Apparate in verfahrenstechnischen Anlagen</td>
<td>- Elemente des Apparatebaus</td>
</tr>
<tr>
<td>- Technische Spezifikation</td>
<td>- Gesetze, Richtlinien, Normen, Standards (u.a. Europäische Druckgeräterichtlinie)</td>
</tr>
<tr>
<td>- Werkstoffe</td>
<td>- Verfahrenstechnische Auslegung</td>
</tr>
<tr>
<td>- Mechanische Auslegung – Festigkeitsberechnung</td>
<td>- Auslegung ausgewählter Elemente nach dem AD 2000 Regelwerk</td>
</tr>
<tr>
<td></td>
<td>Pumpen und Verdichteranlagen:</td>
</tr>
<tr>
<td></td>
<td>- Gemeinsame Merkmale aller Verdrängermaschinen</td>
</tr>
<tr>
<td></td>
<td>- Gemeinsame Merkmale aller Kreiselradmaschinen</td>
</tr>
<tr>
<td></td>
<td>- Vergleich, Auswahl, Modellgesetze der Maschinengattungen</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Übliche Prüfungsform für die Modulprüfung (PL): Klausur
Weitere mögliche Prüfungsformen: Hausarbeit, mdl. Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Zugehörige Lehrveranstaltungen

- Apparatebau
- Pumpen- und Verdichteranlagen

Lehr- und Lernformen/Methoden / Medienformen

Vorlesung (Vortrag, Tafel, Folien, PPT/Beamer, Modelle), Selbststudium

Literatur/ Arbeitsmaterialien

Apparatebau:
Jeweils in der aktuellen Auflage:
- Vorlesungsunterlagen Apparatebau, Prof.Dr.-Ing. F. Beyer, HAW Hamburg

Pumpen und Verdichteranlagen:
<table>
<thead>
<tr>
<th>Modulhandbuch Verfahrenstechnik B.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kalide, W.. Kolben- und Strömungsmaschinen, Hanser Verlag.</td>
</tr>
<tr>
<td>• Mickeleit, M.: Skript Pumpen- und Verdichteranlagen, HAW Hamburg</td>
</tr>
<tr>
<td>Modulhandbuch Verfahrenstechnik B.Sc.</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Bachelor Studiengang Verfahrenstechnik</td>
</tr>
<tr>
<td>Modul: Mess- und Regelungstechnik</td>
</tr>
<tr>
<td>Modulkennzahl</td>
</tr>
<tr>
<td>Modulkoordination / Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP) / Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
</tr>
<tr>
<td>Mathematik A / B (Modul 1 / 2) für Mess-, Steuerungs- und Regelungstechnik</td>
</tr>
<tr>
<td>Physik A / B (Modul 4 / 5) für Praktikum Mess-, Steuerungs- und Regelungstechnik</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
</tr>
<tr>
<td>Die Studierenden ...</td>
</tr>
<tr>
<td>- können bereits vorhandene Kenntnisse über die modellmäßige Beschreibung natürlicher Vorgänge und technischer Prozesse mit Hilfe der allgemeinen Kategorien (Typologie) und Analysemethoden der Systemdynamik darstellen und analysieren.</td>
</tr>
<tr>
<td>- können die Anforderungen der Prozesstechnik an die Mess-, Steuerungs- und Regelungstechnik historisch verorten.</td>
</tr>
<tr>
<td>- erkennen die Möglichkeiten und Beschränkungen messtechnischer Vorrichtungen.</td>
</tr>
<tr>
<td>- können die Anforderungen der Prozesstechnik an die Mess-technik formulieren (Analyse) und entsprechende Lösungs- wege vorschlagen (Synthese).</td>
</tr>
<tr>
<td>- erkennen die Grundlagen, Möglichkeiten und Einschränkungen von Steuerungs- und Regelungskonzepten (feedforward and feedback control).</td>
</tr>
<tr>
<td>- sind in der Lage, fachspezifisch erlerntes Wissen über die Systemdynamik, sowie die Mess-, Steuerungs- und Regelungstechnik auf die jeweiligen (verfahrenstechnischen) Prozesse analytisch und synthetisch anwenden.</td>
</tr>
<tr>
<td>- können Konzeptionell entwickelte Lösungen in der Praktikumsumgebung umsetzen.</td>
</tr>
</tbody>
</table>
Sozial- und Selbstkompetenz

Die Studierenden ...
- sind in der Lage, in Kleingruppen selbständig die Anforderungen der Verfahrens- bzw. Prozesstechnik an die Mess-, Steuerungs- und Regelungstechnik herauszuarbeiten und in der Praktikumsumgebung experimentell umzusetzen.

Inhalte des Moduls

- Grundbegriffe der Mess-, Steuerungs- und Regelungstechnik (MSR)
- Systemdynamik: Modellbildung, Typologie von Systemverhalten, Analysemethoden
- Messtechnik: Grundbegriffe, Messfehler, repräsentative Messverfahren in der Prozesstechnik
- Regelungstechnik: Analyseverfahren, Entwurf von Regelkreisen, Reglertypen, Parametereinstellung, unstetige Regelung
- MSR-Konzepte für verfahrenstechnische Anlagen
- Umsetzung exemplarischer Anwendungen der Mess-, Steuerungs- und Regelungstechnik in der Praktikumsumgebung

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Übliche Prüfungsform für die Modulprüfung (PL): Klausur
Weitere mögliche Prüfungsformen: Hausarbeit, mündliche Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.
Praktikum: Laborabschluss (SL)

Zugehörige Lehrveranstaltungen

- Mess-, Steuerungs- und Regelungstechnik (MSR-Technik)
- Praktikum Mess-, Steuerungs- und Regelungstechnik

Lehr- und Lernformen/Methoden / Medienformen

Literatur/ Arbeitsmaterialien

Jeweils in der aktuellen Auflage:

- P. PROFOS (Hg.): Handbuch der industriellen Messtechnik. München: Oldenbourg Verlag.
<table>
<thead>
<tr>
<th>Modulhandbuch Verfahrenstechnik B.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Skript bzw. Arbeitsblätter, Praktikumsunterlagen</td>
</tr>
<tr>
<td>Modul: Mechanische Verfahrenstechnik</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Modulkennziffer</td>
</tr>
<tr>
<td>Modulkoordination/</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester /</td>
</tr>
<tr>
<td>Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/</td>
</tr>
<tr>
<td>Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen /</td>
</tr>
<tr>
<td>Lernergebnisse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sozial- und Selbstkompetenz</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Inhalte des Moduls
- Grundoperationen der mechanischen Verfahrenstechnik: Zerkleinern, Mischen, Rühren, Trennen von Partikelmischungen und Stoffsystemen, Filtrieren
- Partikelanalyse
- Durchströmung von Schüttungen und poröse Systeme
- Fließverhalten von Schüttgütern
- Grundlagen der Wirbelschichttechnologie
- Grundlagen der Rheologie

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)
Übliche Prüfungsform für die Modulprüfung (PL): Klausur
Weitere mögliche Prüfungsformen: Hausarbeit, mündl. Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Zugehörige Lehrveranstaltungen
- Mechanische Verfahrenstechnik 1
- Mechanische Verfahrenstechnik 2

Lehr- und Lernformen/Methoden/Medienformen
Vortrag, Kleingruppenarbeit, Fallbeispiele
Herleitungen mittels Tafel
Unterstützung durch Powerpoint-Folien
Vertiefung durch Übungsaufgaben

Literatur/Arbeitsmaterialien
Jeweils in der aktuellen Auflage:
- Bohnet, M. Mechanische Verfahrenstechnik. Weinheim: Wiley-VCH.
- Stieß, M. Mechanische Verfahrenstechnik, Bd. 1/2. Berlin: Springer Verlag.
- VDI-Wärmeatlas - Berechnungsblätter für den Wärmeübergang (aktuelle Auflage). Düsseldorf: VDI.
- Skripte der Lehrenden zu den Lehrveranstaltungen
Bachelor Studiengang Verfahrenstechnik

Modul: Thermische Verfahrenstechnik 1

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr. Anika Sievers</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/Angebotsturnus</td>
<td>1 Semester / 4. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h: Präsenzstudium: 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>Erforderliche Vorkenntnisse: Thermodynamik (Modul 8)</td>
</tr>
<tr>
<td></td>
<td>Empfohlene Vorkenntnisse: Strömungsmechanik (Modul 13), Wärme- und Stoffübertragung (Modul 14)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden ...</td>
</tr>
<tr>
<td></td>
<td>• können fachspezifisch erlerntes Grundlagenwissen der thermischen Verfahrenstechnik auf reale technische Prozesse übertragen und diese analysieren.</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, selbständig die entscheidenden - zum Beispiel die limitierenden - Prozessschritte aus einem verfahrenstechnischen Prozess herauszuarbeiten und zu simulieren.</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, mathematische Lösungsansätze für Berechnungen von Prozessbilanzen und Prozesskinetik zu finden.</td>
</tr>
<tr>
<td></td>
<td>• können mit Hilfe der erlernten spezifischen theoretischen Grundlagen neuartige oder weiterentwickelte Prozesse aus dem Bereich der thermischen Verfahrenstechnik zu analysieren und zu optimieren.</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, theoretische Aufgabenstellungen aus der thermischen Verfahrenstechnik in moderne, effiziente und Ressourcen schonende Prozesse umzusetzen.</td>
</tr>
<tr>
<td></td>
<td>• können Anlagen für die Aufgabenstellungen entwickeln (Prozesse entwickeln).</td>
</tr>
<tr>
<td>Sozial- und Selbstkompetenz</td>
<td>Die Studierenden ...</td>
</tr>
</tbody>
</table>
- sind in der Lage, in Kleingruppen selbständig die entscheidenden Prozessschritte bei der Anlagenauslegung und Gestaltung zu berechnen, innerhalb einer Klein- gruppe zu diskutieren und die Ergebnisse zu präsentie- ren.

Inhalte des Moduls

- Grundoperationen der thermischen Verfahrenstechnik: Verdampfung, Kondensation, Destillation, Kristallisation, Trocknung
- Prozessbilanzierung an Beispielen verfahrenstechnischer Grundoperationen
- Prozesskinetik an Beispielen verfahrenstechnischer Grundoperationen
- Grundlagen der Thermodynamik von Mehrphasen-Gemischen
- Anwendungen von Wärme- und Stofftransport an Beispielen verfahrenstechnischer Grundoperationen
- Vertiefte Kenntnisse der Bedeutung und Parameterabhäng- gkeiten von Stoffkenndaten
- Anwendungen der Ähnlichkeitstheorie unter Verwendung charakteristischer dimensionsloser Kennzahlen

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Übliche Prüfungsform für die Modulprüfung (PL): Klausur
Weitere mögliche Prüfungsformen: Hausarbeit, mündl. Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Zugehörige Lehrveranstaltungen

Thermische Verfahrenstechnik 1

Lehr- und Lernformen/Methoden / Medienformen

Vortrag, Kleingruppenarbeit, Fallbeispiele
Herleitungen mittels Tafel
Unterstützung durch Overhead- und Powerpoint-Folien
Vertiefung durch Übungsaufgaben

Literatur/ Arbeitsmaterialien

Jeweils in der aktuellen Auflage:
- Skripte der Lehrenden zu den Lehrveranstaltungen
- Krischer, O., Kast, W. Trocknungstechnik, Bd. 1 Die wissenschaftlichen Grundlagen der Trocknungstechnik. Berlin: Springer.
| • Ignatowitz, E. und Fastert, G. Chemietechnik: Verlag Europa-Lehrmittel. |
| • Sattler, K. Thermische Trennverfahren: Grundlagen, Auslegung, Apparate, Weinheim, New York: Verlag Wiley-VCH. |
| • Ullmann, F. und Bartholomé, E. Ullmanns Encyklopädie der technischen Chemie l Band 1 & 2, Weinheim, Bergstraße: Verlag Chemie. |
Bachelor Studiengang Verfahrenstechnik

Modul: Thermische Verfahrenstechnik 2

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Anika Sievers</td>
</tr>
<tr>
<td>Dauer des Moduls /</td>
<td>5. Semester / 1 Semester / jedes Semester</td>
</tr>
<tr>
<td>Semester/Angebotsturnus</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (LP)/</td>
<td>5 LP/</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>4 SWS</td>
</tr>
<tr>
<td>(SWS)</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h: Präsenzstudium: 72h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Erforderliche Vorkenntnisse</td>
</tr>
<tr>
<td></td>
<td>Thermodynamik (Modul 8)</td>
</tr>
<tr>
<td></td>
<td>Empfohlene Vorkenntnisse</td>
</tr>
<tr>
<td></td>
<td>Strömungsmechanik (Modul 13)</td>
</tr>
<tr>
<td></td>
<td>Wärme- und Stoffübertragung (Modul 14)</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen/</td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td>Die Studierenden ...</td>
</tr>
<tr>
<td></td>
<td>• können fachspezifisch erlerntes Wissen über die Unit Operations der thermischen (und mechanischen) Verfahrenstechnik auf Prozesse übertragen und diese analysieren.</td>
</tr>
<tr>
<td></td>
<td>• können mit Hilfe der erlernten spezifischen theoretischen Grundlagen neuartige oder weiterentwickelte Prozesse oder Prozessketten aus dem Bereich der (mechanischen und) thermischen Verfahrenstechnik analysieren und optimieren.</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, theoretische Aufgabenstellungen aus der (mechanischen und) thermischen Verfahrenstechnik in moderne, effiziente, und Ressourcen schonende Prozesse umzusetzen.</td>
</tr>
<tr>
<td></td>
<td>• können Anlagen für die Aufgabenstellungen entwickeln.</td>
</tr>
<tr>
<td></td>
<td>Sozial- und Selbstkompetenz</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage,</td>
</tr>
<tr>
<td></td>
<td>• in Kleingruppen selbständig die entscheidenden Prozessschritte bei der Anlagenauslegung und Gestaltung zu berechnen, innerhalb einer Kleingruppe zu diskutieren und die Ergebnisse zu präsentieren.</td>
</tr>
<tr>
<td>Inhalte des Moduls</td>
<td>– Unit Operations der thermischen Verfahrenstechnik: Rekristallisation, Adsorption, Absorption, Kristallisation</td>
</tr>
</tbody>
</table>
Modulhandbuch Verfahrenstechnik B.Sc.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
<td>Übliche Prüfungsform für die Modulprüfung (PL): Klausur weitere mögliche Prüfungsformen: Hausarbeit, mündl. Prüfung bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td>• Thermische Verfahrenstechnik 2</td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden/Medienformen</td>
<td>Powerpoint-Präsentation mittels Beamer, Herleitungen mittels Tafel, Filmvorführungen zur Verdeutlichung physikalischer Grundlagen. Vertiefung durch Berechnung von Aufgaben.</td>
</tr>
</tbody>
</table>
| Literatur/Arbeitsmaterialien | Jeweils in der aktuellen Auflage:
 • Skripte der Lehrenden zu den Lehrveranstaltungen, HAW Hamburg
 • Kast, W.: Adsorption aus der Gashase
<table>
<thead>
<tr>
<th>Modulhandbuch Verfahrenstechnik B.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sattler, K. Thermische Trennverfahren: Grundlagen, Auslegung, Apparate. Weinheim, New York: Verlag Wiley-VCH.</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

Modul: Verfahrenstechnisches Praktikum

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination / Modulverantwortliche/r</td>
<td>Prof. Dr. Geweke</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>2 Semester / 4. und 5. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
<td>5 LP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>Erforderliche Vorkenntnisse: Informatik (Modul 3) für Erarbeitung verfahrenstechnischer Prozesse Praktikum</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage ...

• in Kleingruppen selbständig die entscheidenden Prozessschritte aus einem verfahrenstechnischen Prozess herausarbeiten und zu simulieren.

• die entscheidenden Prozessschritte aus einem verfahrenstechnischen Prozess innerhalb einer Kleingruppe.

<table>
<thead>
<tr>
<th>Inhalt des Moduls</th>
<th>Unit Operations Praktikum:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>− Filtration</td>
</tr>
<tr>
<td></td>
<td>− Grundlagen der Rheologie</td>
</tr>
<tr>
<td></td>
<td>− Eigenschaften von Schüttgütern</td>
</tr>
<tr>
<td></td>
<td>− Zerkleinen</td>
</tr>
<tr>
<td></td>
<td>− Wirbelschicht</td>
</tr>
<tr>
<td></td>
<td>− Grundlagen des Rührens</td>
</tr>
<tr>
<td></td>
<td>− Bestimmung der Brennwertes</td>
</tr>
<tr>
<td></td>
<td>− Aufnahme einer Kennlinie für eine Strömungsanlage</td>
</tr>
<tr>
<td></td>
<td>− Sieben und Sichten</td>
</tr>
<tr>
<td></td>
<td>− Druckverlust einer Füllkorperkolonne</td>
</tr>
<tr>
<td></td>
<td>− (Erdöl)rektifikation</td>
</tr>
<tr>
<td></td>
<td>− Kühlturn</td>
</tr>
<tr>
<td></td>
<td>− Oberflächenspannung</td>
</tr>
<tr>
<td></td>
<td>− Wärmeübertrager</td>
</tr>
<tr>
<td></td>
<td>− Gaswäschere</td>
</tr>
<tr>
<td></td>
<td>− Kontinuierlich weitere Versuche</td>
</tr>
</tbody>
</table>

(6 Versuche werden ausgewählt)

Erarbeitung verfahrenstechnischer Prozesse Praktikum:
− für einen wählbaren / vorgegebenen verfahrenstechnischen Prozess ist:
− eine Analyse des industriellen Prozessablaufes vorzunehmen
− die wesentlichen physikalischen / verfahrenstechnischen Einflussparameter herauszuarbeiten
− einzelne Prozessschritte zu simulieren
− Parameterstudien der Prozessschritte vorzunehmen, diese darzustellen, zu analysieren und physikalisch zu deuten
− Einen wissenschaftlichen Vortrag zu diesem Prozess zu halten
− Einen wissenschaftlichen Bericht zu diesem Prozess zu halten

Verwendbarkeit des Moduls

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>
| Studiengangsspezifisches Modul. Die vermittelten grundlegenden Kenntnisse dienen dem vertieften Verständnis der in den Modulen Mechanische und Thermische Verfahrenstechnik vermittelten Inhalte.

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je Praktikum ein Laborabschluss (SL): Bericht über experimentelle Untersuchungen und Präsentation des Berichtes</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Zugehörige Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>− Unit Operations Praktikum</td>
</tr>
<tr>
<td>− Erarbeitung verfahrenstechnischer Prozesse Praktikum</td>
</tr>
</tbody>
</table>

Lehr- und Lernformen/ Methoden / Medienformen

<table>
<thead>
<tr>
<th>Lehr- und Lernformen/ Methoden / Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentelle Untersuchungen im verfahrenstechnischen Labor</td>
</tr>
<tr>
<td>Literatur/ Arbeitsmaterialien</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

<table>
<thead>
<tr>
<th>Modul: Chemische Verfahrenstechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkennziffer</td>
</tr>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sozial- und Selbstkompetenz</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Inhalte des Moduls
- Stöchiometrie, Stoffmengenbilanzen, Schlüsselreaktionen
- Verbrennungsrechnung (Energiebilanz und Zusammensetzung)
- Chemische Gleichgewichte (Gibbs-Energie, Reaktionsenthalpie und Reaktionsentropie)
- Reaktionskinetik
- Reaktionen in disk. Rührkesseln (isotherm)
- Heterogen-katalysierte Reaktionen

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)
Übliche Prüfungsform für die Modulprüfung (PL): Klausur
Weitere mögliche Prüfungsformen: Hausarbeit, mündl. Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.

Zugehörige Lehrveranstaltungen
- Chemische Verfahrenstechnik 1

Lehr- und Lernformen/Methoden/Medienformen
Powerpoint-Präsentation mittels Beamer, Vortrag, Kleingruppenarbeit, Fallbeispiele, Herleitungen mittels Tafel, Vertiefung durch Berechnung von Übungsaufgaben, experimentelle Untersuchungen im verfahrenstechnischen Labor

Literatur/Arbeitsmaterialien
Jeweils in der aktuellen Auflage:
- Atkins, P.A. und de Paula, J Physikalische Chemie, Wiley VCH.
- Skripte des Lehrenden zu den Lehrveranstaltungen
Bachelor Studiengang Verfahrenstechnik

Modul: Chemische Verfahrenstechnik 2

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr. Marc Hölling</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 7. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| Teilnahmevoraussetzungen/Vorkenntnisse | Erforderliche Vorkenntnisse: Chemie 1 / 2 (Modul 9 / 10) für Chem. Verfahrenstechnik 2
Empfohlene Vorkenntnisse: Verfahrenstechnisches Praktikum (Modul 23) für Chem. Verfahrenstechnik Praktikum |
| Lehrsprache | Deutsch |
| Zu erwerbende Kompetenzen / Lernergebnisse | Fachlich-inhaltliche und methodische Kompetenzen
Die Studierenden sind in der Lage, fachspezifisch erlerntes Grundlagenwissen der chemischen Verfahrenstechnik auf reale technische Prozesse zu übertragen und diese zu analysieren.
sind in der Lage, mit Hilfe der erlernten spezifischen theoretischen Grundlagen neuartige oder weiterentwickelte Prozesse aus dem Bereich der chemischen Verfahrenstechnik zu analysieren und zu optimieren.
können theoretische Aufgabenstellungen aus der chemischen Verfahrenstechnik und Physikalischen Chemie in moderne, effiziente und Ressourcenschonende Prozesse umsetzen.
können Anlagen für die Aufgabenstellungen entwickeln, erproben und in Betrieb nehmen.
sind in der Lage, selbstständig die entscheidenden Prozessschritte aus einem verfahrenstechnischen Prozess herauszuarbeiten und zu simulieren.
können mathematische Lösungsansätze finden und numerische Berechnungen durchführen.
Sozial- und Selbстkompetenz
Die Studierenden sind in der Lage, …
innerhalb einer Kleingruppe Aufgabenstellungen verantwortungsvoll eigenständig experimentell zu bearbeiten und die Ergebnisse der Experimente vorzutragen. |
| **Inhalte des Moduls** | − Verweilzeitverhalten von idealen und realen Reaktoren
− Kaskaden- und Dispersionsmodell
− Reaktionen im Rührkessel, in der Rührkesselkaskade und im Strömungsrohr (isotherm)
− Polytroper Rührkessel und Zünd-Lösch-Verhalten |
| **Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)** | Übliche Prüfungsform für die Modulprüfung (SL): Klausur
Weitere mögliche Prüfungsformen: Hausarbeit, mündl. Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben.
Chemische Verfahrenstechnik Praktikum (SL): Laborabschluss (Bericht über experimentelle Untersuchungen) |
| **Zugehörige Lehrveranstaltungen** | − Chemische Verfahrenstechnik 2
− Chemische Verfahrenstechnik (Labor) |
| **Lehr- und Lernformen/ Methoden / Medienformen** | Powerpoint- Präsentation mittels Beamer, Vortrag, Kleingruppenarbeit, Fallbeispiele, Herleitungen mittels Tafel, Unterstützung durch Overhead-Folien, Vertiefung durch Berechnung von Übungsaufgaben, experimentelle Untersuchungen im verfahrenstechnischen Labor |
| **Literatur/ Arbeitsmaterialien** | Jeweils in der aktuellen Auflage:
− Atkins, P.A. und de Paula, J Physikalische Chemie, Wiley VCH.
− Müller-Erlwein, E. Chemische Reaktionstechnik. Heidelberg: Springer Verlag.
− Skripte des Lehrenden zu den Lehrveranstaltungen |
Bachelor Studiengang Verfahrenstechnik

Modul: Allgemeines Ingenieurwissen 1

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. F. Beyer</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 5. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden...

- sind in der Lage, Gefährdungen für Arbeitnehmer zu erkennen, zu analysieren und durch geeignete Maßnahmen abzuwenden.
- sind in der Lage, verfahrenstechnische Anlagenbau- und Entwicklungsprojekte zu strukturieren, zu planen, abzuwickeln, ihre Durchführung zu überwachen und zielgerichtet auf Störungen im Realisierungsprozess zu reagieren.
- kennen die Grundlagen des Projektmanagements, die wesentlichen Projektphasen und die entsprechenden Kompetenzbereiche, bzw. Themenkomplexe.

Sozial- und Selbstkompetenz

Die Studierenden...

- können den Schutz von Arbeitnehmern am Arbeitsplatz aus der Sicht der Beteiligten nachvollziehen.
- können komplexe Strukturen analysieren, ordnen und im Hinblick auf vorgegebene Ziele die richtigen Maßnahmen ergreifen.
- erkennen, dass kritisches Hinterfragen, strukturiertes Vorgehen sowie Methodenkompetenz wesentliche Bestandteile eines erfolgreichen Arbeitsprozesses sind.

Inhalte des Moduls

Arbeits- und Unfallschutz:

- Betriebliche Praxis des Arbeitnehmerschutzes incl. Sicherheitstechnik, sozialer Arbeitsschutz und präventiver Gesundheitsschutz
Modulhandbuch Verfahrenstechnik B.Sc.

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Aufbau von nicht-technischen Schlüsselkompetenzen, die z.B. im Studienschwerpunkt "Projektierung verfahrenstechnischer Anlagen Anwendung finden</th>
</tr>
</thead>
</table>

| Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen) | Übliche Prüfungsform für Arbeits- und Unfallschutz: Klausur (SL)
Weitere mögliche Prüfungsformen: Hausarbeit, Referat, mdl. Prüfung
Übliche Prüfungsform für Verfahrenstechnisches Projektmanagement: Referat (SL)
Weitere mögliche Prüfungsformen: Hausarbeit, Klausur, mdl. Prüfung
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn der Lehrveranstaltung bekannt gegeben. |

| Zugehörige Lehrveranstaltungen | • Arbeits- und Unfallschutz
• Verfahrenstechnisches Projektmanagement |

| Lehr- und Lernformen/Methoden/Medienformen | seminaristischer Lehrvortrag, Tafel, PC/Beamer, Kleingruppenarbeit, Selbststudium |

| Literatur/Arbeitsmaterialien | Jeweils in der aktuellen Auflage:
• Bernecker, M.; Eckrich, K. Handbuch Projektmanagement. München: Oldenbourg Verlag.
• Jakoby, W. Projektmanagement für Ingenieure, Wiesbaden: Springer Vieweg. |
Bachelorstudiengang Verfahrenstechnik

Modul: Allgemeinwissenschaftliches Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/</td>
<td>Prof. Dr. Rainer Stank</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td></td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/</td>
<td>Ein Semester / 5. Semester/ jedes Semester, Auswahl gem. Vorlesungsverzeichnis der Fakultät LS</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (CP) /</td>
<td>4 CP / 4 SWS</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td></td>
</tr>
<tr>
<td>(SWS)</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>120 h, davon Präsenzstudium 72 h, Selbststudium 48 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen /</td>
<td>keine</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td></td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch (bzw. entsprechend gewählter Fremdsprache)</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen /</td>
<td>Die Studierenden treffen ihre Wahl mit Blick auf ihre bisher vorliegenden Kompetenzen sowie fachspezifische Anforderungen des Studiengangs. Ziel ist die Auseinandersetzung mit den Studieninhalten sowie die Entwicklung eigener Schwerpunkte.</td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td></td>
</tr>
<tr>
<td>Inhalte des Moduls</td>
<td>siehe Vorlesungsverzeichnis (zu finden auf der Internetseite der Fakultät Life Sciences)</td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td>siehe Vorlesungsverzeichnis (zu finden auf der Internetseite der Fakultät Life Sciences)</td>
</tr>
<tr>
<td>Lehr- und Lernformen/</td>
<td>Vortrag, seminaristischer Unterricht, Projektarbeit (siehe gewählte Lehrveranstaltung im zugehörigen Modul des Studiengangs)</td>
</tr>
<tr>
<td>Methoden / Medienformen</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>siehe gewählte Lehrveranstaltung im zugehörigen Modul des jeweiligen Studiengangs</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

<table>
<thead>
<tr>
<th>Modul: Praxissemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkennziffer</td>
</tr>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/ Angebotsturnus</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/ Vorkenntnisse</td>
</tr>
<tr>
<td>Lehrsprache</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
</tr>
</tbody>
</table>

Die Studierenden sind in der Lage, die Aufgabenstellung innerhalb des vorhandenen Teams eigenständig und sachgerecht zu erarbeiten. Die Studierenden sind in der Lage, die im Rahmen der Arbeit evtl. auftretenden Konflikte zu erkennen und konstruktiv zu lösen. Ggf. auftretende kritische Fragestellungen anzunehmen und sich damit auseinandersetzen zu können. Die Ergebnisse in geeigneter Form vor Fachleuten vorzutragen. **Inhalte des Moduls**

- Spezifische Aufgabenstellungen entsprechend den Fragestellungen der externen Ausbildungsstätten (Unternehmen aus
<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>dem Bereich der Verfahrenstechnik und angrenzender Fachgebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Studiengangsspezifisches Modul.</td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
<td>Übliche Prüfungsform für die Modulprüfung (SL): Präsentation im Kolloquium</td>
</tr>
<tr>
<td>Weitere mögliche Prüfungsformen: Referat</td>
<td></td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn des Praxissemesters bekannt gegeben.</td>
<td></td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td>• Praxissemester</td>
</tr>
<tr>
<td>• Kolloquium Praxissemester</td>
<td></td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden/Medienformen</td>
<td>Persönliche Diskussion zwischen betreuendem Professor und Studierendem anhand von Berichten/ermittelten Ergebnissen, Besuchen vor Ort</td>
</tr>
<tr>
<td>Diskussion der Präsentation des Praxisberichtes</td>
<td></td>
</tr>
<tr>
<td>Literatur/Arbeitsmaterialien</td>
<td>Die notwendigen Arbeitsmaterialien hängen im höchsten Maße von der zu erarbeitenden Aufgabenstellung ab.</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

Modul: Bachelorarbeit

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr. Geweke</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 6., 7. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>12 LP</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>12 LP entsprechend 360 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>Alle Module des 1. und 2. Studienjahr bestanden und das Praxissemester angemeldet und begonnen</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden ...

- sind in der Lage, technisch-wissenschaftliche Aufgabenstellungen aus dem Bereich der Verfahrenstechnik und angrenzender Gebiete zu analysieren und zu systematisieren.
- können sich zu der spezifischen Aufgabenstellung in den Stand der Technik und den Stand von Wissenschaft und Technik mittels gelerntem Wissen und Fachliteratur einarbeiten.
- sind im Falle einer experimentell ausgerichteten Arbeit in der Lage, sich in die wissenschaftlichen und technischen Grundlagen der Versuchstechnik einzuarbeiten, ein sinnvolles und zielführendes Versuchsprogramm auszuarbeiten, durchzuführen und die Ergebnisse dieser Versuche ingenieurtechnisch zu beurteilen.
- sind im Falle einer theoretisch ausgerichteten Arbeit in der Lage, den Stand von Wissenschaft und Technik aus der Literatur kritisch zu diskutieren und mit den erlernten wissenschaftlichen Grundlagen abzuleichen, Verknüpfungen mit parallel angeordneten Wissensgebieten herzustellen und aus dieser Wissenslage ingenieurtechnisch relevante Schlüsse, Schlussfolgerungen und Handlungsanweisungen zu erarbeiten.
- können eine Aufgabenstellung mittels effizienten Arbeitstechniken problemlösungsorientiert im Rahmen der vorgegebenen Zeit bearbeiten.

Sozial- und Selbstkompetenz
Die Studierenden sind in der Lage, …

- die Aufgabenstellung eigenständig und sachgerecht zu erarbeiten.
- die im Rahmen der Arbeit evtl. auftretenden Konflikte zu erkennen und konstruktiv zu lösen.
- ggf. auftretende kritische Fragestellungen anzunehmen und sich damit auseinandersetzen zu können.
- die Ergebnisse in geeigneter Form vor Fachleuten vorzutragen.

Inhalte des Moduls

- Der Lerninhalt der Bachelorarbeit hängt im höchsten Maße von der zu erarbeitenden Aufgabenstellung ab.

Verwendbarkeit des Moduls

- Studiengangsspezifisches Modul

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

- Prüfungsleistung in Form des Abschlussberichtes (Bachelorarbeit)

Zugehörige Lehrveranstaltungen

- Bachelorarbeit
- Im Rahmen der Betreuung der Bachelorarbeit erfolgt die Anleitung zum ingenieurgemäßen Arbeiten

Lehr- und Lernformen/Methoden/Medienformen

- Persönliche Diskussion zwischen betreuendem Professor und Studierendem anhand von Berichten/ermittelten Ergebnissen
- Diskussion möglicher Präsentationen der Zwischenergebnisse

Literatur/Arbeitsmaterialien

- Die notwendigen Arbeitsmaterialien hängen im höchsten Maße von der zu erarbeitenden Themenstellung ab.
Bachelor Studiengang Verfahrenstechnik

Modul: Prozessautomatisierung und Prozessleittechnik

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Canavas</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/ Angebotsturnus</td>
<td>1 Semester / 7. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
<td>5 LP (ausgewählt aus 15 LP) / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/ Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden ...
- können auf der Basis von bereits vorhandenen Kenntnissen über erwünschte Prozessabläufe sowie über mess-, steuerungs- und regelungstechnische Aufgaben Anforderungen an die Prozessautomatisierung und die Prozessleittechnik formulieren.
- können die Mittel der Prozessautomatisierung und der Prozessleittechnik gezielt anwenden.
- sind in der Lage, die Anbindung der Prozessleittechnik in die Arbeitswelt zu analysieren, zu konzipieren und zu bewerten.
- können Problemstellungen selbständig bearbeiten und sie mit dem im Studium Gelernten verbinden.

Sozial- und Selbstkompetenz

Die Studierenden ...
- sind in der Lage, in Kleingruppen selbständig die Anforderungen der Verfahrens- bzw. Prozesstechnik an die Prozessautomatisierungs- und Prozessleittechnik herauszuarbeiten und in der Praktikumsumgebung experimentell umzusetzen.

Inhalte des Moduls

<table>
<thead>
<tr>
<th>Lerninhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Strukturierung von Prozesssteuerungsaufgaben</td>
</tr>
<tr>
<td>– Binäre Steuerungen (Verknüpfungs- und Schrittablaufsteuerung)</td>
</tr>
<tr>
<td>– Anwendungsgebiete (exemplarisch: Anlagensicherheit)</td>
</tr>
</tbody>
</table>
Modulhandbuch Verfahrenstechnik B.Sc.

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Studiengangsspezifisches Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realisierungsformen:</td>
<td>Speicherprogrammierbare Steuerung und Prozessleitsysteme</td>
</tr>
<tr>
<td></td>
<td>Gehobene Prozesssteuerungsfunktionen</td>
</tr>
<tr>
<td></td>
<td>Prozessleittechnik im Arbeitsplatz</td>
</tr>
</tbody>
</table>

| Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen) | Übliche Prüfungsform für die Modulprüfung (SL): Klausur |

| Zugehörige Lehrveranstaltungen | Prozessautomatisierung und Prozessleittechnik |

| Lehr- und Lernformen/Methoden/Medienformen | Powerpoint-Präsentation mittels Beamer, Herleitungen mittels Tafel, Filmvorführungen zur Verdeutlichung physikalischer Grundlagen. Vertiefung durch Berechnung von Aufgaben, Software, Vortrag, Kleingruppenarbeit, Fallbeispiele |

<table>
<thead>
<tr>
<th>Literatur/Arbeitsmaterialien</th>
<th>Arbeitsblätter für die Vorlesungen, Folien, Arbeitsmaterialien, Fallstudie, Übungsaufgaben, Excel-Sheets, Jeweils in der aktuellen Auflage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Felleisen, M. Prozessleittechnik für die Verfahrensindustrie. München: Oldenbourg Verlag.</td>
</tr>
</tbody>
</table>
Bachelor Studiengang Verfahrenstechnik

Modul: Projektierung verfahrenstechnischer Anlagen

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. F. Beyer</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 7. Sem. / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>10 LP/6 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>240 h, davon Präsenzstudium 108 h (6 SWS), Selbststudium 132 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden ...
- sind in der Lage, fachübergreifend eine verfahrenstechnische Anlage zu projektieren.

Sozial- und Selbstkompetenz

Die Studierenden ...
- können komplexe Strukturen analysieren, ordnen und im Hinblick auf vorgegebene Ziele umsetzen.
- sind in der Lage, sachbezogen, eigenständig und kritikfähig in einem Projektteam zu arbeiten.
- erkennen, dass Selbstreflexion, Flexibilität und kritisches Hinterfragen sowie Methodenkompetenz wesentliche Bestandteile eines erfolgreichen Arbeitsprozesses sind.
- können eigene Inhalte verständlich und überzeugend zusammenfassen und darstellen.

Inhalte des Moduls

- Projektierung einer verfahrenstechnischen Anlage, bzw. Teilanlage
- Simulation des Prozesses
- Auslegung von Komponenten
- Erstellung von wesentlichen Dokumenten wie z.B.
 - Fließbilder
 - Prozessbeschreibung
 - Lage- und Aufstellungsplan
 - technische Spezifikationen für die Hauptkomponenten
- Durchführung einer HAZOP-Studie
- Kostenschätzung
- Zusammenstellung und Präsentation der Ergebnisse
<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Studiengangsspezifisches Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
<td>Projektierung verfahrenstechnischer Anlagen</td>
</tr>
<tr>
<td>Lehr- und Lernformen/ Methoden / Medienformen</td>
<td>Projektseminar, Tafel, PC/Beamer, Kleingruppenarbeit, Selbststudium</td>
</tr>
</tbody>
</table>
| Literatur/ Arbeitsmaterialien | • Diverse Softwarepakete
• Vorlesungsunterlagen
• Sachbezogene Normen und Standards
• Aufgabenstellungen |
<table>
<thead>
<tr>
<th>Bachelor Studiengang Verfahrenstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul: Angewandte numerische Simulation</td>
</tr>
<tr>
<td>Modulkennziffer: 32</td>
</tr>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r: Prof. Dr.-Ing. Rainer Stank</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus: 1 Semester / 7. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS): 5 LP/ 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload): 150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen/ Vorkenntnisse: Keine</td>
</tr>
<tr>
<td>Lehrsprache: Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse: Fachlich-inhaltliche und methodische Kompetenzen</td>
</tr>
<tr>
<td>Die Studierenden ...</td>
</tr>
<tr>
<td>- können die bereits vorhandenen Kenntnisse anwenden, um die verfahrenstechnisch relevanten Größen zu identifizieren, zu berechnen und diese auf die Simulationsanwendungen zu übertragen.</td>
</tr>
<tr>
<td>- sind in der Lage, kommerzielle Simulationssoftware sicher und problemorientiert anzuwenden.</td>
</tr>
<tr>
<td>- sind in der Lage, die physikalischen Gleichungen und Randbedingungen des zu behandelnden Problems richtig in Rahmen der Simulationssoftware einzustellen und zu kontrollieren (Preprocessing).</td>
</tr>
<tr>
<td>- sind in der Lage, eine problemangepasste Auswertung (Postprocessing) der Simulationsergebnisse vorzunehmen und diese darzustellen.</td>
</tr>
<tr>
<td>Sozial- und Selbstkompetenz</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, ...</td>
</tr>
<tr>
<td>- in Kleingruppen selbständig Fallbeispiele aus der Verfahrenstechnik zu analysieren und die Randbedingungen für die Simulation daraus zu extrahieren.</td>
</tr>
<tr>
<td>- moderne Simulationssoftwarepakete zur Lösung verfahrenstechnischer Problemstellungen anzuwenden und können die Simulationsergebnisse aufgrund ihrer Kenntnisse über die numerischen Einflussparameter jeder Simulation sicher einschätzen und bewerten.</td>
</tr>
<tr>
<td>- die verschiedenen Ein- und Ausgabedateien für die Simulationssoftware auch im Rahmen einer gleichzeitigen Bearbeitung im Team sicher und fehlerfrei zu verwalten.</td>
</tr>
<tr>
<td>Inhalte des Moduls:</td>
</tr>
<tr>
<td>- Projektschritte und Phasen einer numerischen Simulation</td>
</tr>
<tr>
<td>Modulhandbuch Verfahrenstechnik B.Sc.</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Studiengangsspezifisches Modul</td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</td>
</tr>
<tr>
<td>Übliche Prüfungsform für die Modulprüfung (SL): Klausur</td>
</tr>
<tr>
<td>Weitere mögliche Modulprüfungen: mündliche Prüfung, Übungstest, Portfolioprüfung</td>
</tr>
<tr>
<td>Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn des Praxissemesters bekannt gegeben.</td>
</tr>
<tr>
<td>Zugehörige Lehrveranstaltungen</td>
</tr>
<tr>
<td>Angewandte numerische Simulation</td>
</tr>
<tr>
<td>Lehr- und Lernformen/Methoden / Medienformen</td>
</tr>
<tr>
<td>Projektseminar; Vortrag, Kleingruppenarbeit, Fallbeispiele</td>
</tr>
<tr>
<td>Powerpoint-Präsentation mittels Beamer, Herleitung mittels Tafel, Filmvorführungen zur Verdeutlichung physikalischer Grundlagen, Vertiefung durch Berechnung von Aufgaben, Exkursionen Simulationsaufgaben am PC</td>
</tr>
<tr>
<td>Literatur/Arbeitsmaterialien</td>
</tr>
<tr>
<td>Jeweils in der aktuellen Auflage:</td>
</tr>
<tr>
<td>Vorlesungsskript, HAW Hamburg</td>
</tr>
<tr>
<td>Folien und Übungsaufgaben, HAW Hamburg</td>
</tr>
<tr>
<td>Projektaufgaben, HAW Hamburg</td>
</tr>
<tr>
<td>Lecheler, St. Numerische Strömungs berechnung. Vieweg-Teubner.</td>
</tr>
<tr>
<td>Ferziger, J. H., Peric, M. Numerische Strömungsmechanik. Springer.</td>
</tr>
</tbody>
</table>

Bachelor Studiengang Verfahrenstechnik

Modul: Simulation verfahrenstechnischer Prozesse

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverantwortliche/r</td>
<td>Prof. Dr. Marc Hölling</td>
</tr>
<tr>
<td>Dauer der Moduls / Semester / Angebotsturnus</td>
<td>1 Semester / 7. Semester / jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/Semesterwochenstunden (SWS)</td>
<td>5 LP/4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmekvoraussetzungen/Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden...
- können die bereits vorhandenen Kenntnisse anwenden, um die verfahrenstechnisch relevanten Größen zu identifizieren, zu berechnen und diese auf Prozesssimulationen anwendungen zu übertragen.
- sind in der Lage, auf der Basis von bereits vorhandenen Kenntnissen über erwünschte Anforderungen an die Prozesssimulation zu formulieren.
- sind in der Lage, die Mittel der Simulationsanwendungen gezielt anzuwenden.

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage, ...

- in Kleingruppen selbständig die Anforderungen der Verfahrens- bzw. Prozessstechnik an Simulationsanwendungen herauszuarbeiten und in der Praktikumsumgebung experimentell umzusetzen.

Inhalte des Moduls

- Einführung in die genutzte Simulationssoftware
- Simulation von verfahrenstechnischen Prozessen (z. B. Wärmetauscher, Destillation, Rektifikation, Adsorption o. Ä.)
- Anwendung der in CVT, MVT und TVT erlernten Inhalte im Bereich der Simulation von Prozessen, Übertragung des Wissens auf die Simulation von Prozessen
<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Studiengangsspezifisches Modul</th>
</tr>
</thead>
</table>
| **Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)** | Übliche Prüfungsform für die Modulprüfung (SL): Klausur
Weitere mögliche Modulprüfungen: mündliche Prüfung, Übungstestat
Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende Prüfungsform von dem verantwortlichen Lehrenden zu Beginn des Praxissemesters bekannt gegeben. |
| **Zugehörige Lehrveranstaltungen** | • Simulation verfahrenstechnischer Prozesse |
| **Lehr- und Lernformen/ Methoden / Medienformen** | Projektseminar:
Vortrag, Kleingruppenarbeit, Fallbeispiele
Powerpoint-Präsentation mittels Beamer, Herleitung mittels Tafel
Vertiefung durch Berechnung von Aufgaben, sowie theoretische Vorbereitung der Simulationen
Simulationsaufgaben am PC |
| **Literatur/ Arbeitsmaterialien** | • Vorlesungsskripte aus den Fächern MVT, TVT und CVT, sowie die in diesen Modulen genannte Literatur
• Handbücher zur angewandten Simulationssoftware |
Bachelorstudiengang Verfahrenstechnik

Modul: Lebensmittelwarenkunde und -verfahrenstechnik

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/ Modulverantwortliche/r</td>
<td>Dipl.oec.troph. Holger Koopmann</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester/ Angebotsturnus</td>
<td>ein Semester/ 7. Semester/ jedes Semester</td>
</tr>
<tr>
<td>Leistungspunkte (LP)/ Semesterwochenstunden (SWS)</td>
<td>5 CP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zu erwerbende Kompetenzen / Lernergebnisse

Fachkompetenz (Wissen und Verstehen):
Die Studierenden sind in der Lage,
- Verfahrensschritte der Lebensmittelproduktion zu skizzieren,
- Grundsätzliche Unterschiede der Lebensmittelgruppen zu benennen,
- das Lebensmittelangebot für Privatverbraucher zu analysieren,
- Verfahren der Vor- und Zubereitung von Lebensmitteln gezielt einzusetzen,
- Rezepte zu entwickeln und zu bewerten.

Methodenkompetenz (Einsatz, Anwendung und Erzeugung von Wissen)
Die Studierenden sind in der Lage,
- Kriterien zur Beurteilung der Lebensmittelqualität anzuwenden,
- Kriterien zur Beurteilung der Nachhaltigkeit anzuwenden,
- einfache Verkostungen zu planen und durchzuführen,
- ein komplexes Thema zu bearbeiten und es anderen zu präsentieren,
- Laborversuche mit Lebensmitteln zu planen, durchzuführen und auszuwerten.

Sozialkompetenz (Kommunikation und Kooperation)
- Die Studierenden sind in der Lage, Fachthemen im Team selbständig zu bearbeiten und zu präsentieren.
<table>
<thead>
<tr>
<th>Selbstkompetenz (Wissenschaftliches Selbstverständnis, Professionalität)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sind in der Lage,</td>
</tr>
<tr>
<td>• ihre Einschätzungen, Bewertungen und Lösungen in der Diskussion mit anderen zu vertreten,</td>
</tr>
<tr>
<td>• Fachinhalte zu reflektieren und Fragen hierzu zu formulieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung 1:</td>
</tr>
<tr>
<td>• Lebensmittelgewinnung und -verarbeitung</td>
</tr>
<tr>
<td>• Lagerung, Konservierung</td>
</tr>
<tr>
<td>• Rechtliche Bestimmungen</td>
</tr>
<tr>
<td>• Kriterien zur Lebensmittelqualität</td>
</tr>
<tr>
<td>• Inhaltsstoffe, physiologische Bedeutung</td>
</tr>
<tr>
<td>• Nachhaltigkeit in der Ernährung</td>
</tr>
<tr>
<td>• Marktübersicht, Verbrauch, Preisvergleich</td>
</tr>
<tr>
<td>Lehrveranstaltung 2:</td>
</tr>
<tr>
<td>• Verfahrenstechnik der Lebensmittelvorbereitung und -zubereitung</td>
</tr>
<tr>
<td>• Bewertung von Rezepten</td>
</tr>
<tr>
<td>• Veränderung von Nährstoffen bei der Vor- und Zubereitung</td>
</tr>
<tr>
<td>• Einsatz von Hydrokolloiden</td>
</tr>
<tr>
<td>Veränderung der Lebensmittel im Garprozess</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlage für die Module Ernährungskonzepte, Produktentwicklung, Diätetik, Gemeinschaftsgastronomie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum: erfolgreicher Abschluss des Praktikums (Laborabschluss, SL).</td>
</tr>
<tr>
<td>Regelhafte Prüfungsform für die Modulprüfung (SL): Hausarbeit mit Präsentation (12-15 Seiten).</td>
</tr>
<tr>
<td>Weiteremögliche Prüfungsformen: Klausur, mündliche Prüfung, Referat.</td>
</tr>
<tr>
<td>Die zu erbringende Prüfungsform wird zu Beginn der Lehrveranstaltung von der Prüferin oder dem Prüfer bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugehörige Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lehrveranstaltung 1: Lebensmittelwarenkunde und -verfahrenstechnik</td>
</tr>
<tr>
<td>• Lehrveranstaltung 2: Lebensmittelwarenkunde und verfahrenstechnik, Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr- und Lernformen / Methoden / Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung 1: Seminaristischer Unterricht</td>
</tr>
<tr>
<td>Lehrveranstaltung 2: Laborpraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur/ Arbeitsmaterialien</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
Bachelorstudiengang Verfahrenstechnik

Modul Lebensmittelchemie

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/r</td>
<td>Prof. Dr. Michael Häusler</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>ein Semester / 7. Semester / jedes Semester</td>
</tr>
<tr>
<td>Credit Points (CP) / Semesterwochenstunden (SWS)</td>
<td>5 CP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Fachkompetenz (Wissen und Verstehen)</td>
</tr>
</tbody>
</table>

Die Studierenden sind in der Lage,
- die Haupt- und Minorbestandteile von Lebensmitteln und ihre chemischen, sensorischen, ernährungsphysiologischen, technologischen, toxikologischen und sensorischen Eigenschaften zu erläutern,
- die Veränderungen und Reaktionen der Haupt- und Minorbestandteile der Lebensmittel bei der Gewinnung, Lagerung, Verarbeitung, Handel und Zubereitung zu erklären,
- die Kenntnisse auf Sachverhalte und Problemstellungen der Qualitätssicherung, Produktentwicklung und Lebensmittelanalytik zu übertragen und anzuwenden.

Methodenkompetenz (Einsatz, Anwendung und Erzeugung von Wissen)
Die Studierenden sind in der Lage,
- mit den Referenzmethoden nach § 64 LFGB eine komplette Vollanalyse der Makronährstoffe eines Lebensmittels durchführen,
- mit modernen apparativen Verfahren der Enzymatik, HPTLC sowie HPLC Lebensmittel auf Minorkomponenten zu untersuchen,
- Lebensmittelrechtliche Bestimmungen zur Bewertung der Analysenergebnisse zu recherchieren und zu analysieren,
- eine umfängliche Dokumentation der Untersuchungen, der Untersuchungsergebnisse sowie der lebensmittelrechtlichen Bewertung zu erstellen,
• eigenständig in der Fachliteratur zu recherchieren,
• Grundregeln des sicheren Arbeitens in einem chemischen Labor umzusetzen.

Sozialkompetenz (Kommunikation und Kooperation)

Die Studierenden sind in der Lage,
• ihre Einschätzungen, Bewertungen und Lösungen in Diskussionen zu vertreten,
• gemeinsam mit anderen Studierenden in Gruppenarbeit fachliche Aufgabenstellungen zu lösen und die Lösungsergebnisse in der Lehrveranstaltung zu präsentieren und zu erklären,
• hierbei offen auf die Argumentation anderer einzugehen.

Selbstkompetenz (Wissenschaftliches Selbstonverständnis, Professionalität)

Die Studierenden sind in der Lage,
• das präsentierte Fachwissen aufzunehmen und die systematischen Zusammenhänge zu erläutern,
• Fachinhalte zu reflektieren und Fragen hierzu zu formulieren,
• im Praktikum Methoden, Versuchsabläufe und Ergebnisse strukturiert zu präsentieren und zu erklären.

Inhalte des Moduls

- Wasser, Proteine, Fette, Kohlenhydrate einschl. Ballaststoffe
- Vitamine, Mineralstoffe, Fettbegleitstoffe, Sekundäre Pflanzenstoffe, Aromastoffe, Enzyme
- Zusatzstoffe, Zusatzstoffzulassungsverordnung, Aromenverordnung, Nahrungsergänzungsmittel, Diätverordnung
- Eigenschaften, Veränderungen, Funktionalität der Stoffe in Bezug auf Qualität, Haltbarkeit, Sensorik, Verarbeitung, Nährwert, Toxikologie und Analytik
- Haltbarmachung von Lebensmitteln; Hürdenkonzept
- Referenzverfahren und Instrumentelle Methoden der Lebensmittelanalytik

Verwendbarkeit des Moduls

Vertiefung der in den Modulen Grundlagen der Chemie und Organische Chemie und Biochemie erworbenen Kompetenzen der praktischen Arbeiten in einem Chemielabor.

Das Modul legt Grundlagen für weiterführende Aspekte in den Modulen Lebensmitteltechnologie sowie Qualitäts- und Risikomanagement.

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Praktikum: Laborabschluss (SL)
Regelhafte Prüfungsform für die Modulprüfung (SL): Klausur.
Weitere mögliche Prüfungsformen: mündliche Prüfung, Hausarbeit, Referat.
Die zu erbringende Prüfungsform wird zu Beginn der Lehrveranstaltung von der Prüferin oder dem Prüfer bekannt gegeben.

Zugehörige Lehrveranstaltungen

Lehrveranstaltung 1: Lebensmittelchemie
Lehrveranstaltung 2: Lebensmittelchemie Laborpraktikum
| Lehr- und Lernformen/Methoden/Medienformen | Lehrveranstaltung 1: Seminaristischer Unterricht, Selbststudium
Lehrveranstaltung 2: Laborpraktikum |
|--|--|
Bachelorstudiengang Verfahrenstechnik

Modul: Qualitäts- und Risikomanagement

<table>
<thead>
<tr>
<th>Modulkennziffer</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkoordination/Modulverant-wortliche/r</td>
<td>Prof. Dr. Ulrike Pfannes, Prof. Dr. Katharina Riehn</td>
</tr>
<tr>
<td>Dauer des Moduls / Semester / Angebotsturnus</td>
<td>ein Semester / 7. Semester / jedes Semester</td>
</tr>
<tr>
<td>Credit Points (CP) / Semesterwochenstunden (SWS)</td>
<td>5 CP / 4 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand (Workload)</td>
<td>150 h, davon Präsenzstudium 72 h (4 SWS), Selbststudium 78 h</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen / Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Lehrsprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zu erwerbende Kompetenzen / Lernergebnisse</td>
<td>Fachkompetenz (Wissen und Verstehen)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage,</td>
</tr>
<tr>
<td></td>
<td>• die relevanten gemeinschaftlichen und nationalen Rechtsgrundlagen zur Etablierung risikobasierter Lebensmittelsicherheitskonzepte in Lebensmittelunternehmen zu benennen,</td>
</tr>
<tr>
<td></td>
<td>• die verschiedenen Akteure der Lebensmittelsicherheitskette in Deutschland und Europa und ihre Aufgaben darzustellen,</td>
</tr>
<tr>
<td></td>
<td>• Risikomerkmale zu definieren und eine Risikomatrix zu skizzieren,</td>
</tr>
<tr>
<td></td>
<td>• die Grundlagen des Hazard Analysis Critical Control Point (HACCP) Konzepts darzustellen,</td>
</tr>
<tr>
<td></td>
<td>• die Strukturen der risikobasierten Lebensmittelüberwachung in Deutschland zu beschreiben,</td>
</tr>
<tr>
<td></td>
<td>• die Richtlinien zur Qualitätssicherung der Produktionsabläufe und - umgebung (GHP und GMP) in der Produktion darzustellen,</td>
</tr>
<tr>
<td></td>
<td>• Ursprünge der gesundheitlichen Beeinflussung von Lebensmitteln im Hinblick auf die Lebensmittelkette aufzuzeigen,</td>
</tr>
<tr>
<td></td>
<td>• die Aktionsfelder des Qualitätsmanagements (Politik, Planung, Lenkung, Prüfung, Darlegung und Verbesserung) und ihre Bedeutung zu erläutern,</td>
</tr>
<tr>
<td></td>
<td>• verschiedene Normen und Standards zum QRM in der Ernährungswirtschaft zu benennen und deren Gemeinsamkeiten und Unterschiede darzustellen,</td>
</tr>
<tr>
<td></td>
<td>• die Verbindung zwischen Qualitäts- und Nachhaltigkeitsmanagement zu erläutern,</td>
</tr>
<tr>
<td>Inhalte des Moduls</td>
<td>Ziele der Lebensmittelsicherheit in Deutschland und Europa</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Gemeinschaftliche und nationale rechtliche Grundlagen</td>
</tr>
<tr>
<td></td>
<td>Behördliche Strukturen zur Umsetzung von Risikobewertung,</td>
</tr>
<tr>
<td></td>
<td>-ma- nagement und -kommunikation in Europa und Deutschland</td>
</tr>
<tr>
<td></td>
<td>Grundzüge der amtlichen Überwachung von Lebensmittelbetrieben</td>
</tr>
<tr>
<td></td>
<td>Kenntnisse über lebensmittelassozierte gesundheitliche Gefahren</td>
</tr>
<tr>
<td></td>
<td>Risikobeurteilung in Lebensmittelbetrieben (Risikomerkmale und Ri- sikomatrix)</td>
</tr>
<tr>
<td></td>
<td>Gefahrenanalyse in Produktionsprozessen</td>
</tr>
<tr>
<td></td>
<td>HACCP</td>
</tr>
<tr>
<td></td>
<td>Beziehung und Abgrenzung zwischen QM und RM</td>
</tr>
<tr>
<td></td>
<td>Bedeutung des Qualitätsmanagements für Unternehmen: int-</td>
</tr>
<tr>
<td></td>
<td>T & extern</td>
</tr>
<tr>
<td></td>
<td>Interessierte Parteien an Qualität und Qualitätsmanagement</td>
</tr>
<tr>
<td></td>
<td>Grundzüge von QM-Systemen</td>
</tr>
<tr>
<td></td>
<td>Normen und Standards: DIN EN ISO 22000:2005, IFS Food,</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 9000f, TQM / EFQM</td>
</tr>
<tr>
<td></td>
<td>Aufgaben einer Qualitäts- und Hygienebeauftragten</td>
</tr>
<tr>
<td>Leistungsbezeichnung</td>
<td>Kürzel</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Qualitätsaudits und Zertifizierungen</td>
<td></td>
</tr>
<tr>
<td>Einführung eines QM-Systems: Vorgehensweise, Probleme, Bedeutung der Leitung und des Personals</td>
<td></td>
</tr>
<tr>
<td>QM & Beschwerdemanagement</td>
<td></td>
</tr>
<tr>
<td>Grundzüge der Nachhaltigkeit und deren Verknüpfung zum QM</td>
<td></td>
</tr>
<tr>
<td>Qualität und Qualitätsmanagement in verschiedenen ökotrophologischen Arbeitsfeldern</td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

Voraussetzungen für die Vergabe von Leistungspunkten (Studien- und Prüfungsleistungen)

Regelhafte Prüfungsform für die Modulprüfung (SL): Klausur (120 Minuten).
Weitere mögliche Prüfungsform: mündliche Prüfung, Hausarbeit, Referat.

Zugehörige Lehrveranstaltungen

Qualitäts- und Risikomanagement

Lehr- und Lernformen / Methoden / Medienformen

Seminaristischer Unterricht, Gruppenarbeiten, E-Learning Selbststudium

Literatur

| VDOE (Hrsg.): Qualitätsmanagement in der Ernährungswirtschaft: Qualität, Sicherheit und Nachhaltigkeit umsetzen |
| Bonn 2020 |