- Mathematik
- Mathematische Verfahren (Master)
- Machine Learning (Master)
- angewandte Informatik
Department of Mechanical Engineering and Production Management
Berliner Tor 21
20099 Hamburg
Room 412
T +49 40 428 75-8789
Vorhersagbarkeit von Strompreisfluktuationen auf dem EPEX Intraday Market
Big Data Analytik und Predictive Maintenance von Photovoltaik-Wechselrichtern
Klassifizierung der Alarme aus Condition Monitoring Systemen von Windturbinen
Untersuchung verschiedener Methoden des Deep Learnings im Kontext der Audio-Klassifikation
Sarah Hallerberg ist promovierte theoretische Physikerin und Professorin für Mathematik
und angewandte Informatik an der HAW Hamburg. Zuvor arbeitete sie bei IBM Rese-
arch Dublin als Permanent Research Staff an der automatisierten Analyse von Strom-
verbrauchs- und Erzeugungsdaten. Als Postdoc war sie davor vier Jahre lang am Max-
Planck-Institut für Dynamik und Selbstorganisation in Göttingen beschäftigt. Neben ihrer
eigenen Forschungtätigkeit betreute sie drei Promovierende und zwei Masterarbeiten.
Zuvor war Sarah Hallerberg Postdoc an der TU Chemnitz, Gastprofessorin an der Uni-
versidad de Cantabria und Postdoc am CSIC-Institut Instituto de Física de Cantabria in
Santander, Spanien. Nach ihrem Physikstudium mit Schwerpunkt statistischer Physik hat
Sarah Hallerberg am Max-Planck-Institut für Physik komplexer Systeme in Dresden zum
Thema Vorhersagbarkeit von Extremereignissen in Zeitreihen“ promoviert. Gefördert
vom DAAD war sie mehrere Monate am Centre for the Analysis of Time Series der Lon-
don School of Economics.
Ihre Forschungsschwerpunkte sind datenbasierte Vorhersage und Klassifizierungsalgorithmen, Vorhersagbarkeit von Extremereignissen und kritische Systemumschwünge, Dynamik von Netzwerken, Störungsausbreitung in dynamischen Systemen und die automatisierten Analyse großer Datenmengen.